《新研究研制出类石榴结构新型复合吸波材料》

  • 来源专题:先进材料
  • 编译者: 张迪
  • 发布时间:2023-11-12
  • 来自科学网

    新研究研制出类石榴结构新型复合吸波材料.


    记者5月27日从中国科学院大连化学物理研究所获悉,该所研究员孙承林、副研究员顾彬等和大连理工大学段玉平教授合作,在构筑高效复合吸波材料方面取得新进展,设计并制备了一种具有类石榴结构的磁性树脂衍生碳复合吸波材料,通过组分调控和微观结构设计引入了多重电磁波损耗机制,使该复合材料表现出了优异的吸波性能。

    随着电子信息技术的快速发展,电磁干扰问题日益严峻,有效的吸波材料尤其是针对GHz频段的电磁波,对电子安全和医疗保健等领域具有重要意义。根据吸波机制,可将吸波材料分为磁损耗型和介电损耗型,其中单一磁损耗吸波材料存在斯诺克极限、易腐蚀、易聚集、密度大等缺点,而单一的介电损耗材料(如碳材料)也存在阻抗不匹配,损耗机制单一的问题。

    为解决这些问题,研究人员提出了组分调控和微观结构设计两个解决策略,即以具有可控分子结构和物理化学性质的合成树脂作为碳源,耦合磁损耗组分,进行有效的多组分调控,形成多重损耗机制,实现电磁参数和吸波性能的有效调节。此外,研究人员对微观结构进行设计调控,构筑出具有类石榴结构的Fe3C@GC/AC复合材料,解决现有吸波材料存在的磁性颗粒尺寸分布不均匀、易聚集等问题。

    实验结果表明,独特的类石榴结构优化了阻抗匹配,同时提升了界面极化损耗和磁损耗。在反射损耗、界面极化、偶极极化、电导损耗以及磁损耗的共同作用下,研究人员制备出的复合吸波材料在2.08mm的厚度下,实现了高达-96.3dB(99.99999%)的反射损耗值,有效吸收带宽为6.38GHz(覆盖了Ku波段)。当模拟厚度在1.0至5.0mm间调变时,88%的测试波段(3.9至18 GHz)均可以实现有效吸收。


    作者:郝晓明 来源:科技日报 发布时间:2023/5/28 15:31:34


  • 原文来源:http://news.sciencenet.cn/htmlnews/2023/5/501636.shtm
相关报告
  • 《美国研制出新型二维异质结构材料 开辟纳米电子技术新可能》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2019-10-16
    • 美国西北大学工程学院的研究人员利用石墨烯和硼苯两种材料创建出新型二维异质结构材料,为纳米电子技术的发展开辟了新的可能性。该项研究有美国海军研究办公室和国家科学基金会提供支持,研究成果发表于2019年10月11日的《科学进展》杂志上。 为了测试是否有可能将上述两种材料集成为异质结构,研究人员在同一衬底上同时生长了石墨烯和硼苯。他们首先生长石墨烯,因为它在较高的温度下生长,然后将硼沉积在同一衬底上,并使其在没有石墨烯的区域中生长。在这个过程中两种材料之间产生了接触面,由于硼烯的适应性,两种材料在原子尺度上结合在一起。研究人员利用扫描隧道显微镜对二维异质结构进行扫描,发现接触面上的电子跃迁突然异常,这意味着这种异质材料是制造微型电子设备的理想选择。 目前,该研究团队正在致力于用硼烷创建其他异质结构,并将其与数百种已知2D材料相结合。
  • 《宁波材料所成功研制出吸光率高达99%的超黑吸光涂层》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2019-04-23
    • 中国科学院宁波材料技术与工程研究所先进涂层与增材制造技术团队经过多年研究,成功开发出一种超黑涂层。经第三方权威机构检测,200nm-25μm波段吸光率高达99%。该涂层可在多种基材表面沉积,同时可实现大面积批量制备,而且可适应高温、低温、真空、液体等极端服役环境,具有极广阔的应用前景。   超黑涂层现有或潜在的应用领域十分广泛。例如,空间红外天文望远镜处在工作状态时,其内部元器件会因为发热而产生微量红外线,从而干扰仪器对于空间目标波段的观测。为此,有必要吸收仪器本身产生的光学干扰,以提高望远镜对于目标信号的灵敏度。当然,对于杂质光源的屏蔽不仅仅是天文望远镜的需求,所有精密的光学仪器,都需要屏蔽无关的光学干扰,如拉曼、紫外、红外光谱仪等。光学或微波暗室需要做到真正的“暗”,才可以保证内部仪器工作不受干扰。同时,军事上也需要隐身技术,如为军事设备或人员提供各种必要的伪装等。除此之外,太阳能电池也需要增强对于特定光源的吸收,以提高能量转换效率。   吸光材料的研究多关注于超黑物质。当光线与物体发生作用时,部分能量被物体吸收,部分未被吸收的能量被反射、散射或透射,反射与散射部分影响我们所观察物体的颜色。当所有可见光都被物体吸收时,则物体表现为黑色,所以物质越黑则吸光范围越广。相关研究的难点不仅在于超黑物质本身的研制,同时也在于超黑涂层的制备技术开发,因为只有把超黑物质制备为涂层,才能实现其长效工作。而且应用场景对基材的需求多种多样,涂层服役工况条件各异,导致了超黑涂层研制困难重重。   经过多年研究,中国科学院宁波材料所先进涂层与增材制造技术团队的科研人员成功研制出一种新型超黑物质,并开发出一种新型超黑涂层。该涂层可以沉积在几乎所有的材质基体表面,包括柔性基体,尺寸大小和形状不受限制,并且可以实现高效、大面积的可控制备,可应用于超低温、高温、真空、液体等极端环境。经第三方权威机构测试,其在200nm-25μm波段吸光率高达99%。同时,该超黑涂层所用材料超轻,不会增加仪器自身重量。   除了空间探测、精密仪器、超黑暗室、光伏组件之外,该涂层有望应用于所有需要光学信号调控的领域,包括卫星光学定位、数码摄像机、建筑隔热保温、视觉艺术设计等领域。未来,更多潜在的应用有望继续被开发出来,这将是一个发展空间广阔的蓝海。