《青岛海洋科学与技术试点国家实验室在利用人工智能技术提升气候模式性能方面取得新进展》

  • 来源专题:中国科学院文献情报系统—海洋科技情报网
  • 编译者: liguiju
  • 发布时间:2022-07-03
  • 近日,由青岛海洋科学与技术试点国家实验室海洋动力过程与气候功能实验室首席科学家张荣华研究员领衔的科研团队在明确的物理约束下设计了首个基于深度学习和湍流观测数据的海洋垂向混合参数化方案,并应用于海洋和气候模式中,其模拟效果优于基于物理经验关系的传统参数化方法,有效提升了海洋和气候模式的模拟性能。

    自2021年诺贝尔物理学奖获得者真锅淑郎等人于1969年首次建立了涵盖全球大气、海洋等分系统的耦合模式以来,海气耦合模式一直是学界进行气候研究的重要工具。世界气候研究计划(WCRP)从1995年起,先后组织了六次国际耦合模式比较计划(如最近的CMIP6产品),这些计划极大推动了气候模式的发展和改进,并已成为政府间气候变化专门委员会(IPCC)评估报告撰写的重要科学依据。然而,即使是2021年最新发布的CMIP6模式,其模拟结果与观测之间仍存在较大的系统性差异,这些误差严重制约了模式对当前气候模拟和未来气候变化预估的能力,并直接影响到IPCC报告的可信度。因此,气候模式误差的归因和消除一直是气候研究中的重要内容之一。

    气候模式的系统性误差从何而来?在众多原因中,海洋垂向混合参数化方案存在很大的不确定性,是一个公认的重要误差来源。当前气候模式采用基于物理经验关系的参数化方案(如基于洋流切变和稳定度等海洋状态的KPP方案),而这些方案估算的混合系数与观测事实差异较大,很难准确地刻画观测到的海洋垂向湍流热交换过程,进而导致海温模拟等变量出现误差。尤其是在热带太平洋海区,基于物理关系的参数化方案估算的垂向涡扩散系数明显偏大和向下湍流热通量过强,是导致耦合模式中“冷舌”偏冷误差的重要原因。

    参数化方案之所以出现不确定性,关键在于目前通用的方案都是基于预先假设的物理经验关系。由于目前对海洋湍流混合过程的物理认识还很有限,基于这些有限认识的经验关系自然会产生很大的不确定性。为解决这一难题,张荣华团队利用近十年热带太平洋海域的湍流观测记录,在明确的物理约束下,设计了首个基于深度学习的海洋垂向混合参数化方案。通过将其应用到海洋环流和海气耦合模式中,证实其对上层海洋垂向混合系数和垂向热通量表征的能力,从而有效改善了热带太平洋的温度模拟结果。

    研究成果近期以“Physics-informed deep-learning parameterization of ocean vertical mixing improves climate simulations”(在明确的物理约束下基于数据驱动的人工智能方法对海洋垂直混合参数化的改进)为题发表于知名学术期刊National Science Review( 国家科学评论; IF=23.178)。国际人工智能地球科学权威专家Gustau Camps-Valls教授特别撰文评述对研究成果进行评述,认为该研究以一种简洁(the beauty of the method lies in its simplicity)和切实可行(the work by Zhu et al. contributes in a very practical way)的方式,构建了性能更优的、泛化能力较强的参数化方案(the model is able to provide not only excellent parameterizations but also shows a certain degree of extrapolation/generalization),最终实现提升气候模式模式性能的目标。

    成果由海洋动力过程与气候功能实验室朱聿超副研究员、张荣华研究员、王凡研究员、李晓峰研究员、李德磊副研究员以及美国俄勒冈州立大学James N. Moum教授共同完成。该研究得到了中国科学院海洋大科学研究中心、青岛海洋科学与技术试点国家实验室、中国科学院第四纪科学与全球变化卓越创新中心、中国科学院战略性先导科技专项和国家自然科学基金等项目的资助。

    原文链接:https://doi.org/10.1093/nsr/nwac044

  • 原文来源:http://www.qnlm.ac/page?a=5&b=2&c=338&d=1&p=detail
相关报告
  • 《中国科学院海洋研究所在利用人工智能技术提升气候模式性能方面取得新进展》

    • 来源专题:中国科学院文献情报系统—海洋科技情报网
    • 编译者:liguiju
    • 发布时间:2022-06-21
    • 近日,中国科学院海洋研究所张荣华研究员团队在明确的物理约束下,设计了首个基于深度学习和湍流观测数据的海洋垂向混合参数化方案用于海洋和气候模式中,其模拟效果优于基于物理经验关系的传统参数化方法,有效提升了海洋和气候模式的模拟性能。相关成果发表于National Science Review( 国家科学评论; IF=17.275)。 自2021年诺贝尔物理学奖获得者真锅淑郎等人于1969年首次建立了涵盖全球大气、海洋等分系统的耦合模式以来,海气耦合模式一直是进行气候研究的重要工具。世界气候研究计划(WCRP)从1995年起,先后组织了六次国际耦合模式比较计划(如最近的CMIP6产品),这些计划极大地推动了气候模式的发展和改进,并已经成为政府间气候变化专门委员会(IPCC)评估报告撰写的重要科学依据。然而,即使是2021年最新发布的CMIP6模拟结果,与观测之间仍存在较大的系统性差异,这些误差严重制约了模式对当前气候模拟和未来气候变化预估的能力,并直接影响到IPCC报告的可信度。鉴于此,气候模式误差的归因和消除一直是气候研究中的重要内容之一。 在“气候模式的系统性误差从何而来”的众多原因中,海洋垂向混合参数化方案存在很大的不确定性,是一个公认的重要误差来源。当前气候模式采用基于物理经验关系的参数化方案(如基于洋流切变和稳定度等海洋状态的 KPP方案),而这些方案估算的混合系数与观测事实差异较大,很难准确地刻画好观测到的海洋垂向湍流热交换过程,进而导致海温模拟等变量出现误差。尤其是在热带太平洋海区,基于物理关系的参数化方案估算的垂向涡扩散系数明显偏大和向下湍流热通量过强,是导致耦合模式中“冷舌”偏冷误差的重要原因。 参数化方案之所以出现不确定性,关键在于目前通用的方案都是基于预先假设的物理经验关系;由于目前对海洋湍流混合过程的物理认识还很有限,基于这些有限认识的经验关系自然会产生很大的不确定性。为解决这一难题,张荣华团队利用近十年热带太平洋海域的湍流观测记录,在明确的物理约束下,设计了首个基于深度学习的海洋垂向混合参数化方案。进一步将这一参数化方案应用到海洋环流和海气耦合模式中, 证实其对上层海洋垂向混合系数和垂向热通量表征的能力,从而有效改善热带太平洋的温度模拟结果。 国际人工智能地球科学权威专家Gustau Camps-Valls教授特别撰文评述该研究成果(https://doi.org/10.1093/nsr/nwac092),认为该研究以一种简洁(the beauty of the method lies in its simplicity)和切实可行(the work by Zhu et al. contributes in a very practical way)的方式,构建了性能更优的、泛化能力较强的参数化方案(the model is able to provide not only excellent parameterizations but also shows a certain degree of extrapolation/generalization),最终实现提升气候模式模式性能的目标。 论文第一作者为中国科学院海洋所朱聿超副研究员,通讯作者为张荣华研究员,合作者包括中国科学院海洋所王凡研究员、李晓峰研究员、李德磊副研究员以及美国俄勒冈州立大学James N. Moum教授。该研究成果得到了中国科学院海洋大科学研究中心、青岛海洋科学与技术试点国家实验室、中国科学院第四纪科学与全球变化卓越创新中心、中国科学院战略性先导科技专项和国家自然科学基金等项目的资助。 论文链接:https://doi.org/10.1093/nsr/nwac044
  • 《青岛海洋科学与技术试点国家实验室在地球系统模式可预报性研究领域取得新进展》

    • 来源专题:中国科学院文献情报系统—海洋科技情报网
    • 编译者:liguiju
    • 发布时间:2022-06-17
    • 近日,由青岛海洋科学与技术试点国家实验室“鳌山人才”卓越科学家、海洋动力过程与气候功能实验室(以下简称“功能实验室”)成员张绍晴教授领衔的科研团队,在地球系统模式可预报性研究方面取得新成果,该成果基于多个模式的大量数值实验,系统性地探讨了初值可预报性、边值可预报性以及联合初边值可预报性的线性演变特征。 近年来,全球范围内特大暴雨、热浪、冬季干旱、夏季洪涝等极端天气气候事件频发,严重威胁人类的生命财产安全。研究气候系统的可预报性,既能增加人们对气候状态演变规律的认知,也可以通过提前预测,降低未来气候变化带来的社会、经济损失和环境破坏影响。气候系统的可预报性是一个被系统内部线性和非线性过程决定的固有特性,指当系统随时间演变时输入信号的可追踪性,从而开发出预测未来气候状态的方法。气候系统的输入信息通常包括初始状态和边界条件,其可预报性也就相应地由初值可预报性和边值可预报性构成,所以预测未来的气候状态是一个联合初边值可预报性问题。目前学界的研究,多从气候系统演变过程中的信号和噪音比来定性探讨其可预报性期限问题,对初值可预报性和边值可预报性及联合初边值可预报性的定量测定探讨较少。 研究团队首先从简单的概念“气候”模式出发,构造可追踪测定的初始条件和边界条件结构,定量地讨论初值、边值及联合初边值可预报性的线性演变特征。随后,在粗分辨率海洋大气耦合模式(FOAM)和国际政府间气候变化专门委员会(IPCC)流行分辨率耦合气候模式(CM2)中进一步得到了验证,获得了初边值可预报性对系统总体可预报性贡献的具体时间尺度演变。该研究成果对深入理解初值和边值信号在气候系统发展的不同阶段对气候信号的贡献有重要参考意义,通过考虑边值信号的传入,可以减缓由于误差增长所造成的初值信号预报技巧的下降,从而延长对大尺度气候现象整体的预报能力。这种用预报技巧直接测量可预报性的研究方法,可以直接应用于指导提高气候预报预测水平。 国际气候领域顶尖学术期刊Climate Dynamics(气候动力学)对上述成果以“The linear behavior of the joint initial-boundary-value predictability of the climate system(气候系统联合初边值可预报性的线性行为)”为题进行了在线报导,成果由功能实验室在读硕士研究生雍建林为第一作者,张绍晴教授为通讯作者,联合功能实验室高阳教授、李建平教授、卢绿博士后等以及国外合作院所的科学家合作完成。