《具有纳米形貌和细胞外蛋白的丝膜可促进角膜上皮伤口愈合》

  • 来源专题:纳米科技
  • 编译者: 郭文姣
  • 发布时间:2021-04-17
  • 自然于2021年4月14日发布关于纳米的内容,文章指出角膜伤口的愈合依赖于调节再生细胞迁移和增殖的细胞外基质(ECM)和地形线索。在我们的研究中,将具有2000、1000、800纳米平行脊宽平面或纳米形貌的丝膜与包括I型胶原(collagen I)、纤维连接蛋白、层粘连蛋白和聚d -赖氨酸的ECMs结合,以加速角膜伤口愈合。具有800nm脊宽的丝膜比其他尺寸结构提供了更好的细胞扩展和伤口恢复。用I型胶原蛋白涂覆800 nm的图案丝膜被证明可以最佳地进一步促进小鼠和兔子角膜上皮细胞的生长和伤口恢复。这种增强的细胞反应与黏附灶的分布、大小和总量的增加有关。转录组学和信号通路分析表明丝状地形图通过肌动蛋白成核ARP-WASP复合物通路调控细胞行为,该通路调控丝状伪足的形成。我们进一步探索了这一机制,并发现抑制该通路的关键蛋白Cdc42可延迟伤口愈合,并降低丝状伪足的长度、密度和排列。体内抑制Cdc42可导致受损角膜的再上皮化延迟。我们的结论是,蚕丝膜纳米形貌结合I型胶原形成了比纳米形貌或ECM单独更好的角膜创面修复基质。

相关报告
  • 《国家纳米科学中心单个细胞外囊泡蛋白红外光谱研究方面取得新进展》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心—领域情报网
    • 编译者:冯瑞华
    • 发布时间:2022-11-14
    • 国家纳米科学中心朱凌项目研究员、杨延莲研究员与中国科学院物理所陈佳宁研究员合作,在利用纳米红外光谱技术研究小细胞外囊泡(sEV)的蛋白质二级结构并用于乳腺癌恶性程度和转移性评估方面取得新进展。相关研究成果以Single-vesicle Infrared Nanoscopy for Noninvasive Tumor Malignancy Diagnosis为题发表于《美国化学会志》(J. AM. Chem. Soc. 2022, DOI: 10.1021/jacs.2c07393)。 作为动态生物分子,蛋白质的丰度和结构对于肿瘤的发生和发展至关重要。肿瘤相关蛋白质组成和结构的差异为阐明癌症发病机制提供重要信息,是肿瘤诊断和药物设计的重要生物标志物。sEV是由细胞分泌的纳米尺度(直径30–200 nm)的膜囊泡,携带和传递来源细胞的蛋白质、核酸等分子信息,影响生理病理过程。对肿瘤来源sEV蛋白质组分和二级结构的分析,有助于阐明sEV在肿瘤进展和转移中的作用,并促进肿瘤相关标志物的开发和液体活检技术的发展。然而sEV极具异质性,其蛋白组成和结构存在个体差异,单个sEV的分子分析和异质性评估在技术上仍具有挑战性。光学表征提供了无损、快速、非侵入性的便捷探测手段研究蛋白质的组分和结构信息,然而由于远场光谱学的微米级光斑与百纳米级sEV直径之间的尺寸差异,使得远场光谱技术仅限于开展对sEV族群的大样本统计分析,无法实现单个sEV层次表征和检测其物理化学性质。 研究团队利用自搭建的基于近场光学显微镜的纳米红外光谱系统(nano-FTIR)的10 nm尺度红外光场局域增强,在蛋白质酰胺I带(1600–1700 cm-1)和酰胺II带(1510–1580 cm-1)的指纹光谱频段内,对单个sEV开展原位红外指纹光谱研究。利用酰胺I带吸收频率对蛋白质骨架结构的高度敏感性,通过对正常细胞和不同恶性程度肿瘤细胞来源的sEV的红外光谱进行统计分析,发现酰胺I/II吸收比值随着sEV来源细胞系的恶性程度增加而增加,高恶性肿瘤细胞来源sEV蛋白质α-螺旋和无归卷曲的含量发生显著下降,反平行β-折叠和β-转角显著增加。并通过比较无转移和淋巴结转移乳腺癌患者原发灶肿瘤组织来源sEV,证明这种sEV蛋白质二级结构的改变可高灵敏评估肿瘤转移性。研究结果显示了nano-FTIR在单个sEV水平进行分子鉴定和分析的优势,证明了sEV蛋白质二级结构变化在癌症检测中的意义和临床价值,为基于sEV的nano-FTIR分子指纹谱识别的癌症诊断提供了新的解决方案。 杨延莲课题组长期致力于开发肿瘤检测及治疗的新方法。前期提出了微球辅助流式细胞术的方法检测血液来源的sEV,并将该方法拓展应用于乳腺癌(Small methods. 2018;2(11):1800122),脑胶质瘤(Theranostics, 2019;9(18): 5347-58),垂体瘤(Analytical Chemistry, 2019;91(15): 9580-89)等多种肿瘤的液体活检分析当中,并在100余例癌症患者血液样本中取得很好的检测效果,实现了多种癌症上的临床诊断和分子分型,具有高灵敏度和特异性。同时,针对sEV异质性问题,构建基于原子力显微镜的单个sEV力学性质分析模型,实现了对不同恶性程度以及同一来源不同大小sEV的纳米力学性质差异分析(Advanced Science, 2021;8(18): 2100825)。这些结果为发展基于sEV的液体活检技术提供了重要信息和方法。 中国科学院物理研究所薛孟飞博士(现为国科温州研究院博士后)和国家纳米科学中心叶思源博士为共同第一作者。国家纳米科学中心朱凌项目研究员、杨延莲研究员、中国科学院物理所陈佳宁研究员为共同通讯作者。上述研究工作得到了中国科技部重点研发计划、国家自然科学基金、中国科学院战略性先导科技专项、中国博士后科学基金和中国科学院青年创新促进会的支持。        原文链接:https://doi.org/10.1021/jacs.2c07393   图. 基于nano-FTIR的单个sEV蛋白质二级结构分析用于评估肿瘤恶性程度和转移性。(a)单个sEV原位红外吸收光谱分析;(b)sEV红外吸收光谱特征和蛋白质二级结构组成与肿瘤恶性程度相关;(c)sEV红外吸收光谱特征和蛋白质二级结构组成可评估乳腺癌患者转移性。
  • 《Science:重大突破!蛋白Neuropilin-1促进新冠病毒进入和感染人体细胞》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:hujm
    • 发布时间:2020-10-21
    • 新型冠状病毒SARS-CoV-2导致2019年冠状病毒病(COVID-19),如今正在全球肆虐。众所周知,SARS-CoV-2是通过受体ACE2感染宿主细胞的。在一项新的研究中,来自德国神经退行性疾病研究中心、慕尼黑工业大学、哥廷根大学医学中心和芬兰赫尔辛基大学等研究机构的研究人员发现神经纤毛蛋白1(neuropilin-1, NRP1)是一种可以促进SARS-CoV-2进入细胞内部的因子。NRP1定位于呼吸道和嗅觉上皮,这可能是一个重要的战略定位,但却有助于SARS-CoV-2的感染和传播。相关研究结果于2020年10月20日在线发表在Science期刊上,论文标题为“Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity”。论文通讯作者为慕尼黑工业大学的Mikael Simons和赫尔辛基大学的Giuseppe Balistreri。 SARS-CoV-2可影响肺部和肾脏等多个器官,还可引发神经系统症状,包括暂时性的嗅觉和味觉丧失。因此,COVID-19的症状谱是相当复杂的。2003年,一种相关的冠状病毒---SARS-CoV---导致了小得多的疫情爆发,这可能是因为这种病毒感染仅限于下呼吸系统,使得这种病毒的传播性降低。相反,SARS-CoV-2则还会感染上呼吸系统,包括鼻黏膜,因此会通过主动的病毒脱落(如打喷嚏时)迅速传播。 进入细胞的开门者 组织趋化性反映了病毒感染不同器官中特定细胞类型的能力。它取决于细胞表面是否有对接点,即所谓的受体。这些受体允许病毒对接并侵入到细胞中。Simons解释说,“"我们研究的起点是为什么都使用ACE2作为受体的SARS-CoV和SARS-CoV-2会导致不同的疾病。” 为了理解这些组织趋向性的差异,这些研究人员观察了SARS-CoV-2的“刺突蛋白”,这是这种病毒进入宿主细胞的关键。Simons解释说,“SARS-CoV-2刺突蛋白与它的较老近亲的不同之处在于它插入了一个弗林蛋白酶(furin)切割位点。在许多其他高致病性人类病毒的刺突蛋白中也发现了类似的序列。当我们意识到这个弗林蛋白酶切割位点存在于SARS-CoV-2刺突蛋白中时,我们认为这可能会让我们找到答案。”当蛋白被弗林蛋白酶裂解时,在它的被切割的一端会暴露出一个特定的氨基酸序列。这样的可被弗林蛋白酶切割的蛋白底物有一个已知能与细胞表面上的神经纤毛蛋白结合的特征性模式序列。 利用实验室培养的细胞、模拟SARS-CoV-2的人工病毒以及天然存在的病毒进行的实验表明,在ACE2存在的情况下,NRP1能够促进病毒感染。通过用抗体特异性阻断NRP1,这种病毒感染可被抑制。Simons解释说,“如果你把ACE2看作是进入细胞的一扇门,那么NRP1可能是引导这种病毒进入这扇门的一个因素。ACE2在大多数细胞中的表达水平很低。因此,这种病毒不容易找到进入细胞的门。诸如NRP1之类的其他因素可能是帮助这种病毒进入细胞的必要因素。” 一种进入神经系统的潜在途径 鉴于嗅觉丧失是COVID-19的症状之一,而NRP1主要存在于鼻腔的细胞层中,因此这些研究人员们检查了死亡患者的组织样本。Simons说,“我们想找出表达NRP1的细胞是否真地被SARS-CoV-2感染,发现情况确实如此。”在小鼠身上进行的其他实验表明,NRP1能够将病毒大小的纳米颗粒从鼻黏膜运输到中枢神经系统。这些纳米颗粒经过化学工程设计,可与NRP1结合。相比之下对NRP1没有亲和力的对照颗粒,当这些可结合NRP1的纳米颗粒被施用到这些小鼠的鼻子上时,它们在几个小时内就到达了大脑中的神经元和毛细血管。Simons解释说,“我们可以确定,至少在我们的实验条件下,NRP1可以促进这些纳米颗粒运输到大脑中,但是对于SARS-CoV-2是否也存在这种情况,我们无法得出任何结论。很有可能在大多数患者中,这一运输途径被免疫系统所抑制。” 在未来开发新疗法的起点? Simons说,“SARS-CoV-2需要ACE2受体才能进入细胞,但可能需要NRP1等其他因子来支持它的功能。然而,目前我们只能推测所涉及的分子过程。据我们的推测,NRP1捕捉这种病毒并将它引导至ACE2。还需要开展进一步的研究来阐明这个问题。目前推测阻断NRP1是否可以成为一种可行的治疗方法还为时过早。这必须在未来的研究中加以解决。”