《Cell:开发出更好的方法从海量序列中寻找RNA病毒》

  • 来源专题:生物安全知识资源中心—领域情报网
  • 编译者: hujm
  • 发布时间:2022-10-12
  • 一家动物园曾经提供过一本彩色画册,画的是北极熊在冬天的场景,配有各种深浅不一的白色蜡笔。对于在大型数据集中寻找RNA病毒序列的科学家们来说,他们的工作可能类似于在那本书的彩色页面上寻找一片雪花。

    在一项新的研究中,来自以色列特拉维夫大学、美国国家生物技术信息中心(NCBI)和美国能源部联合基因组研究所(JGI)的研究人员描述了一个可以专门扫描RNA病毒序列的计算管道。利用这一工作流程,他们梳理了来自世界各地不同环境样本的5000多个RNA序列数据集(宏转录组),使RNA病毒的多样性增加了五倍。相关研究结果于2022年9月28日在线发表在Cell期刊上,论文标题为“Expansion of the global RNA virome reveals diverse clades of bacteriophages”。

    在谈及发现的病毒多样性时,论文共同通讯作者、NCBI高级研究员Eugene Koonin说,“我们周围的病毒世界是巨大的,我们现在有了探索它的手段。尽管这种规模的数据分析面临的技术挑战是非常艰巨的。”

    用于过滤序列的计算筛子

    地球上的微生物比一把泥土中的颗粒还要多,而病毒的数量远远超过微生物。测序技术和计算工具的进步已发现了病毒的多样性,这些病毒不仅感染作物、动物和人类,而且还感染微生物,它们的存在或不存在会影响地球的营养循环。

    虽然大多数有机体的遗传信息是在DNA中编码的,RNA将DNA内的指令传递给细胞,但RNA病毒将它们的遗传信息储存在RNA中,而不是储存在DNA中。论文共同作者、JGI 科学家Simon Roux说,“我认为RNA病毒在全球范围内甚至比DNA病毒更不为人所知。但与DNA病毒一样,RNA病毒在全世界范围内感染微生物,并在感染期间导致细胞死亡和/或细胞生理学的深刻变化。”

    虽然所有的RNA病毒都有一个编码称为RNA引导的RNA聚合酶(RDRP)的基因,这是进行RNA基因组复制所必需的,但检测它一直是一个挑战。在海量的基因组数据中找到RNA病毒,需要开发特殊的计算筛子(computational sieve)来过滤掉不太可能包含RdRP序列的序列。

    论文第一作者兼论文共同通讯作者、特拉维夫大学的Uri Neri回忆说,这项新的研究是2019年开始的三方合作的结果。特拉维夫大学的研究团队和NCBI团队的成员已经在一起合作分析原核生物病毒(噬菌体),他们从JGI的Nikos Kyrpides那里得知,Kyrpides的微生物组数据科学小组也在致力于分析RNA病毒。在这三个团队的几次视频会议之后,很明显,与较小的个人努力相比,更大的合作努力在取得更高质量的结果方面要有效得多。

    这些作者使用了JGI的综合微生物基因组与微生物组(IMG/M)系统中所有公开的宏转录组数据集。Neri说,“我们随后研究了更多的样本并完善了我们的方法。我们的团队不断壮大,项目的范围也在不断扩大。”为此,Kyrpides强调,众多JGI科学用户在收集和提交他们的微生物组样本在JGI进行测序方面的贡献怎么强调都不过分。他说,他们的合作和支持,以及在一些情况下,他们允许使用尚未公布的序列数据,对于这项新研究的成功绝对是至关重要的,对他们贡献的承认也是如此。

    Roux和Koonin都指出,所发现的大量RNA病毒序列“极大地改变了全球病毒多样性的观点”,尽管不是在更高层次的病毒群体(门)分类中。此外,RNA病毒似乎并不是均匀地分布在世界各地。

    一个扩大的病毒群体是与细菌有关的病毒;直到现在,大多数已知的RNA病毒都与真核生物有关。Roux指出,伴随着与细菌相关的RNA病毒的扩大,发现“少数细菌使用CRISPR来防御RNA,尽管不清楚为何这种情况很少被检测到。”

    开发协调“真实”大数据的方法

    对于这些作者来说,导致发现丰富的RNA病毒的计算工作只是一个开始。Neri说,“我经常说,仅仅确定一个序列是病毒的,甚至还不是故事的一半。我们在发现后的分析中投入了大量的精力---我们尽可能地描述每一种病毒所携带的蛋白结构域,以及谁是它们可能的宿主。我们已经将所有这些信息完全免费并公开提供给更广泛的科学界。”

    Koonin和特拉维夫大学的Uri Gophna都指出,其他平行的研究报告了全球RNA病毒组的类似“急剧扩张”。Koonin说,“我们如今需要比较和协调这些发现,提出一个单一的、非冗余的数据集。希望在相对较短的时间内,我们将能够估计出RNA病毒组(RNA virome)的实际规模。然而,这如今是真正的大数据,我们正在处理数十亿个序列,很快就会有数万亿个序列。开发高效、自动化的方法来分析和分类这种规模的序列数据是至关重要的。” 

    参考资料:

    1. Uri Neri et al. Expansion of the global RNA virome reveals diverse clades of bacteriophages. Cell, 2022, doi:10.1016/j.cell.2022.08.023.

    2. A better way to find RNA virus needles in database haystacks
    https://phys.org/news/2022-10-rna-virus-needles-database-haystacks.html

  • 原文来源:https://news.bioon.com/article/22b6e42501d3.html
相关报告
  • 《Mol Cell:基因编辑大牛张锋新力作!利用Cas13开发出经编程后杀死人细胞中RNA病毒的新技术---CARVER》

    • 来源专题:人类遗传资源和特殊生物资源流失
    • 编译者:yanyf@mail.las.ac.cn
    • 发布时间:2019-10-21
    • 2019年10月14日讯/生物谷BIOON/---世界上许多最常见或致命的人类病原体都是RNA病毒,比如埃博拉病毒、寨卡病毒和流感病毒,并且大多数都没有美国食品药品管理局(FDA)批准的治疗方法。在一项新的研究中,来自美国麻省理工学院、哈佛大学和布罗德研究所等研究机构的研究人员将一种CRISPR RNA切割酶转变为一种经编程后检测和破坏人细胞中RNA病毒的抗病毒剂。相关研究结果于2019年10月10日在线发表在Molecular Cell期刊上,论文标题为“Programmable Inhibition and Detection of RNA Viruses Using Cas13”。 人们此前已将Cas13酶用作一种切割和编辑人类RNA的工具,并且将它用作一种检测病毒、细菌或其他靶标存在的诊断试剂。这项新的研究是首批利用Cas13或任何CRISPR系统作为体外培养的人细胞中的一种抗病毒剂的研究之一。 这些研究人员将Cas13的抗病毒活性及其诊断能力结合在一起,构建出一种有朝一日可能用于诊断和治疗病毒感染的系统。他们的系统称为CARVER(Cas13-Assisted Restriction of Viral Expression and Readout)。 这项新的研究是由布罗德研究所成员Pardis Sabeti、Sabeti实验室研究生Catherine Freije和Sabeti实验室博士后研究员Cameron Myhrvold共同领导的。 Sabeti说:“人类病毒病原体极其多样化,不断地适应它们所在的环境,即便在单一病毒种类中也是如此,这既强调了所面临的挑战,也强调了开发灵活抗病毒平台的必要性。我们的研究将CARVER确立为一种强大且可快速编程的诊断和抗病毒技术,可用于各种各样的病毒。” 病毒走开 人们迫切需要新的抗病毒方法。在过去的50年中,科学家们已制造了90种经过临床认证的抗病毒药物,但是它们仅能治疗9种疾病,而且病毒病原体经过快速进化后对现有的治疗产生抵抗力。仅有16种病毒具有FDA批准的疫苗。 为了探究新的抗病毒策略,这些研究人员着重关注了天然地靶向细菌中病毒RNA的Cas13。这种酶经编程后靶向RNA的特定序列,几乎没有限制,相对容易进入细胞,并且已在哺乳动物细胞中得到了广泛的研究。 这些研究人员首先筛选了一系列RNA病毒,以寻找Cas13能够高效靶向的病毒RNA序列。他们主要寻找既不易发生突变又最有可能在切割后让病毒失效的序列片段。 Myhrvold解释说,“从理论上讲,你可以对Cas13进行编程,使得它可以攻击病毒的几乎任何部分。但是在单个病毒种类中和不同病毒种类之间均存在着巨大的多样性,并且随着病毒的进化,它的大部分基因组会迅速变化。如果你不小心,你可能会找到最终没有效果的靶标。” 这些研究人员通过计算确定了数百个病毒种类中的数千个位点,这些位点可能是Cas13的有效靶标。 三合一系统 鉴于有了一系列潜在的病毒RNA靶标,这些研究人员随后对Cas13进行编程,具体就是以对这种酶的向导RNA(gRNA)进行基因改造,让Cas13寻找并切割这些核酸序列中的任何一个。 这些研究人员通过实验手段测试了Cas13在受到三种不同的RNA病毒---淋巴细胞脉络膜脑膜炎病毒(LCMV),甲型流感病毒(IAV)和水泡性口腔炎病毒(VSV)---中的一种病毒感染的人细胞中的活性。他们将Cas13基因和经过基因改造的gRNA引入到人细胞中,并在24小时后将这些细胞暴露于病毒中。再过24小时后,Cas13酶将体外培养的人细胞中的病毒RNA水平降低了多达40倍。 这些研究人员进一步探究了Cas13对病毒感染力的影响---换句话说,剩下的病毒中还有多少实际上可以继续感染人细胞。实验数据表明在病毒暴露8小时后,Cas13将流感病毒的感染力降低了300倍以上。 为了增加诊断组分,这些研究人员还将整合了基于Cas13的核酸检测技术SHERLOCK。由此形成的CARVER系统可以快速测量样品中剩余的病毒RNA水平。 Freije说,“我们设想Cas13作为一种研究工具,以探究人细胞中病毒生物学的许多方面。它也可能是一种临床工具,可用于诊断样本、治疗病毒感染并测量治疗的有效性,所有这些都能使得CARVER快速适应并应对新的或耐药性的病毒出现。”(生物谷 Bioon.com)
  • 《Cell:开发出病毒感染实时成像技术,从而实时监测细胞中的病毒感染》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:hujm
    • 发布时间:2020-11-16
    • 在一项新的研究中,来自荷兰胡布勒支研究所和乌特勒支大学的研究人员开发出一种先进的技术,可以实时监测病毒感染。他们预计这种技术可用于研究多种病毒,包括导致目前大流行病的新冠病毒SARS-CoV-2。因此,这种被命名为病毒感染实时成像(virus infection real-time imaging, VIRIM)的技术对于深入了解病毒在人体中的感染情况非常有价值。最终,这可能为病毒感染带来更有针对性的治疗方法。相关研究结果于2020年11月13日在线发表在Cell期刊上,论文标题为“Translation and Replication Dynamics of Single RNA Viruses”。 病毒对社会产生了很大的负面影响。目前全球爆发的SARS-CoV-2对个人身心健康和经济造成的巨大后果再次证明了这一点。 入侵者 RNA病毒是一大类以RNA形式携带遗传信息的病毒,RNA是一种类似于DNA的分子。RNA病毒感染宿主细胞后,会劫持宿主细胞的许多功能,并将它变成一个病毒生产工厂。这样一来,这种病毒入侵者就可以迅速在有机体的细胞内进行复制。新的病毒颗粒随后通过呼吸道等地方释放出来,可以感染其他人。RNA病毒的例子包括冠状病毒、丙型肝炎病毒(HCV)、寨卡病毒和肠道病毒,其中肠道病毒包括引起普通感冒的鼻病毒、引起病毒性脑膜炎和脑炎的柯萨奇病毒以及引起麻痹性脊髓灰质炎的脊髓灰质炎病毒。 在此之前,现有的技术只能提供病毒感染细胞的快照。换句话说,科学家们可以观察到某个时间点的受感染细胞,但无法从头到尾监控病毒感染的过程。这种新开发的显微镜技术VIRIM改变了这一点:胡布勒支研究所的Marvin Tanenbaum及其团队和乌特勒支大学的Frank van Kuppeveld及其团队开发出这种先进的方法,有了这种方法,可以在实验室里非常精确地可视化观察病毒感染的整个过程。论文第一作者Sanne Boersma说,“这种新方法使得我们能够解决许多关于病毒的重要问题。” 经过荧光标记的病毒 这种方法在肠道病毒中使用了SunTag--一种由Tanenbaum先前开发的技术,van Kuppeveld在这组病毒中拥有丰富的专业知识。SunTag被引入到病毒的RNA中,用一种非常明亮的荧光标签来标记病毒蛋白。通过使用这种荧光标签,可以用显微镜观察病毒蛋白,这使得人们能够看到病毒何时、何地、如何快速地产生它的蛋白并在其宿主细胞中复制。VIRIM比其他方法灵敏得多:可以检测到单个病毒RNA产生的蛋白。这使得人们可以从一开始就追踪病毒感染的过程。 竞争 细胞在感染病毒后,利用自己的防御系统来检测和消灭病毒。一旦病毒进入细胞,病毒和宿主细胞之间就会产生竞争:病毒的目的是劫持细胞进行自我复制,而宿主则极力阻止这一点。利用VIRIM,这些研究人员能够观察到这种竞争的结果。他们发现,在一个细胞亚群中,宿主细胞赢得了竞争。Boersma说,“这些宿主细胞被病毒感染了,但病毒不能复制。”这引发了Boersma和她的同事们的好奇心,并促成了一项新的实验。 病毒的致命弱点 这些研究人员通过增强宿主细胞的防御系统来帮助它们。结果发现,在这种防御系统实现增强的细胞中,第一次的病毒复制往往就失败了,这使得病毒无法接管宿主。Boersma解释道,“复制过程中的第一步是病毒的致命弱点:这个时刻决定着病毒是否能进一步传播。如果宿主细胞在感染之初没有设法消除病毒,那么病毒就会复制并赢得竞争。”Boersma和她的同事们使用了一种微小核糖核酸病毒(picorna)来测试VIRIM。这个病毒科的成员可以引起从普通感冒到小儿麻痹症等严重疾病。 VIRIM能够识别多种病毒的脆弱阶段。这些研究人员期望该技术对研究包括SARS-CoV-2在内的许多威胁生命的病毒有价值。Boersma解释说,“了解病毒的复制和传播可以帮助我们确定病毒的致命弱点。这些知识可以促进治疗方法的开发,比如,在病毒生命的脆弱时刻进行干预的治疗方法。这使得我们能够开发出更有效的治疗方法,并有望减轻病毒对社会的影响。”