《利用纳米孔传感技术,物理学家可以检测单个粒子的细微变化》

  • 来源专题:纳米科技
  • 编译者: 郭文姣
  • 发布时间:2019-02-25
  • 电阻脉冲纳米孔传感的原理是,电流通过纳米孔(绿色,左边)时的微小变化可以用来了解纳米孔内的分子。研究人员能够用不同的保护剂(配体)捕获纳米级的金簇,这些配体会在金核周围移动,从而产生复杂的当前步骤。

    来源:联邦

    弗吉尼亚联邦大学物理系的研究人员发现,一种被称为纳米孔传感的技术可以用来探测微簇变化,即比分子大但比固体小的物质块。

    人文科学学院实验生物物理学和纳米科学副教授Joseph Reiner博士说:“纳米孔的作用就像极其微小的传感器,每边只有几个纳米。”“这种大小尺度让我们能够观察到当一个配体分子改变簇的大小时。实时检测这些变化的能力——当它们发生的时候——是一种新的和令人兴奋的东西。

    赖纳和物理学教授马西莫·f·贝尔蒂诺博士,以及VCU的学生鲍比·考克斯、彼得·威尔克森和帕特里克·伍德沃斯在《美国化学学会杂志》上发表了一篇论文,描述了这一发现。

    赖纳说:“这是一个新发现,因为在单个粒子上实时检测这些变化的方法实在不多。”“这打开了观察纳米表面各种有趣现象的大门,这是许多化学家在应用和纯研究领域都非常感兴趣的一个领域。”

    这一研究为簇簇的活性提供了新的线索,簇簇是一种反应性极强的物质,被认为是催化或催化剂加速化学反应的有趣对象。

    “了解分子在纳米团簇上的行为有助于我们了解它们的催化特性,”Bertino说。“到目前为止,人们认为分子在簇表面是静止的。我们的实验表明,相反,分子以非常快的速度改变它们的构型和位置。这为这些物质的化学性质打开了新的视角。

    贝尔蒂诺说,研究小组的发现可能会带来令人兴奋的新发现。

    “现在有几条可能的小巷正在开放。一个是集群增长。没有人能很好地理解这些东西是如何产生的。另一个是帮助调整他们的资产,”他说。“到目前为止,人们种植这些东西并使它们具有反应性,但并不总是清楚这是如何发生的。”从本质上说,飞镖是用来解决这个问题的,人们希望其中一个飞镖能粘住。这项工作允许我们查看一个定义良好的集群大小,并通过一次更改一个参数来处理它。

    通过更好地观察这些簇及其行为,研究人员希望能够更好地了解催化剂如何改进,从而更有效地发现和合成药物。

    故事来源:

    材料由弗吉尼亚联邦大学提供。注:内容可根据风格和长度进行编辑。

    期刊引用:

    鲍比·考克斯,帕特里克·h·伍德沃斯,彼得·d·威尔克森,马西莫·f·贝尔蒂诺,约瑟夫·e·雷纳。利用电阻脉冲纳米孔传感技术观察了硫代酸盐包裹的金纳米团簇在配体诱导下的结构变化。美国化学学会杂志,2019年;DOI: 10.1021 / jacs.8b12535

    ——文章发布于2019年2月21日

相关报告
  • 《物理学家用量子麦克风计算声音粒子》

    • 来源专题:纳米科技
    • 编译者:郭文姣
    • 发布时间:2019-07-29
    • 斯坦福大学的物理学家开发了一种“量子麦克风”,它非常灵敏,可以测量声音的单个粒子,称为声子。 该设备于7月24日发表在“自然”杂志上,最终可能会产生更小,更高效的量子计算机,通过操纵声音而不是光来操作。 斯坦福大学人文与科学学院应用物理学助理教授,研究负责人Amir Safavi-Naeini说:“我们希望这种设备能够为未来的量子机器提供新型的量子传感器,传感器和存储设备。” 量子运动 最早由阿尔伯特爱因斯坦于1907年提出,声子是由抖动原子发出的振动能量包。运动的这些不可分割的包或量子表现为声音或热量,这取决于它们的频率。 像光子,它是光的量子载体,声子是量子化的,意味着它们的振动能量被限制在离散值 - 类似于楼梯由不同的步骤组成。 “声音具有我们通常不会经历的这种粒度,”Safavi-Naeini说。 “声音,在量子水平,爆裂。” 机械系统的能量可以表示为不同的“Fock”状态 - 0,1,2等 - 基于它产生的声子数量。例如,“1 Fock状态”由一个特定能量的声子组成,“2 Fock状态”由两个具有相同能量的声子组成,依此类推。较高的声子状态对应于较响的声音。 到目前为止,科学家一直无法直接测量工程结构中的声子态,因为状态之间的能量差异 - 在阶梯类比中,步骤之间的间距 - 正在消失得很小。该研究的共同第一作者,研究生Patricio Arrangoiz-Arriola说:“一个声子对应的能量比保持灯泡一秒所需的能量小十万亿亿倍。” 为了解决这个问题,斯坦福大学的团队设计了世界上最敏感的麦克风 - 利用量子原理来窃听原子的低语。 在普通的麦克风中,入射的声波摇动内部膜,并且该物理位移被转换成可测量的电压。这种方法不适用于检测单个声子,因为根据海森堡不确定性原理,量子物体的位置如果不改变它就不能精确地知道。 “如果你试图用常规麦克风测量声子的数量,测量行为会向系统注入能量,掩盖你试图测量的能量,”Safavi-Naeini说。 相反,物理学家设计了一种方法来直接测量声波中的Fock状态 - 从而测量声子的数量。 “量子力学告诉我们,位置和动量不能准确地知道 - 但它没有说能量,”Safavi-Naeini说。 “可以无限精确地了解能源。” 唱歌量子比特 该组开发的量子麦克风由一系列过冷纳米机械谐振器组成,这些谐振器很小,只有通过电子显微镜才能看到。谐振器耦合到超导电路,该超导电路包含在没有电阻的情况下移动的电子对。该电路形成量子比特或量子比特,其可以同时存在于两个状态并且具有可以电子方式读取的固有频率。当机械谐振器像鼓面一样振动时,它们会产生不同状态的声子。 “谐振器由周期性结构形成,就像声音的镜子一样。通过在这些人工晶格中引入缺陷,我们可以将声子捕获在结构的中间,”Arrangoiz-Arriola说。 像不守规矩的囚犯一样,被困的声子在监狱的墙壁上发出嘎嘎声,这些机械动作通过超细线传递到量子比特。 “当量子比特和谐振器的频率几乎相同时,量子比特对位移的敏感性特别强,”联合第一作者亚历克斯沃拉克说,他也是斯??坦福大学的研究生。 然而,通过使系统失谐以使量子位和谐振器以非常不同的频率振动,研究人员削弱了这种机械连接并触发了一种量子相互作用,称为色散相互作用,将量子位直接连接到声子上。 该键使得量子位的频率与谐振器中的声子数成比例地移动。通过测量量子比特的调谐变化,研究人员可以确定振动谐振器的量子化能级 - 有效地解析声子本身。 “不同的声子能级在量子比特谱中表现为明显的峰值,”Safavi-Naeini说。 “这些峰值对应于Fock状态0,1,2等等。这些多峰从未见过。” 机械量子力学 掌握精确生成和检测声子的能力可以帮助为新型量子器件铺平道路,这些量子器件能够存储和检索编码为声音粒子的信息,或者可以在光学和机械信号之间无缝转换的信息。 可以想象,这种装置可以比使用光子的量子机器更紧凑和有效,因为声子更容易操作并且具有比光粒子小数千倍的波长。 “现在,人们正在使用光子对这些状态进行编码。我们希望使用声子,这带来了许多优势,”Safavi-Naeini说。 “我们的设备是制造'机械量子力学'计算机的重要一步。” 斯坦福大学的其他合着者包括研究生王昭友,姜文涛,蒂莫西麦肯纳和杰里米威特默,以及博士后研究人员Marek Pechal和RaphëlVanLaer。 ——文章发布于2019年7月26日
  • 《新闻稿:物理学家解释薄碳纳米管薄膜的金属导电性》

    • 来源专题:纳米科技
    • 编译者:郭文姣
    • 发布时间:2017-11-29
    • 一个来自MIPT的国际研究团队;列别捷夫物理研究所,RAS;Prokhorov综合物理研究所,RAS;Skoltech;Aalto大学(芬兰)研究了基于单壁碳纳米管的薄宏观薄膜的光学和介电特性,并利用红外和tera赫兹光谱学对其导电性的金属性质进行了解释。研究结果发表在《碳与纳米技术》杂志上。 一个单壁碳纳米管,或SWNT,可以被描绘成一个石墨烯薄片卷成圆柱体。轻、强、耐高温,SWNTs可作为复合材料的添加剂,使其更耐用,或作为制造气溶胶过滤器和电化学传感器的积木。透明和灵活的碳纳米管薄膜——也就是由相互交叉的纳米管形成的二维结构——有各种各样的潜在应用,例如在柔性电子设备上的超级电容器或透明电极——可以弯曲、折叠和扭曲而不断裂的电子设备。因此,研究这些薄膜的电荷转移机制对于基础研究和实际应用都很重要。 物理学家们用特拉赫茨-红外光谱(terahertz -红外光谱)测量了不同温度下的薄膜的光学和电特性,从- 268摄氏度到室温,以及一系列不同的辐射波长——从紫外光到太赫兹(波长约1毫米)。通过对薄膜与辐射相互作用的研究,得出了有关薄膜电动力学的基本数据。 采用气溶胶化学气相沉积法合成了SWNT薄膜。简单地说,一种催化剂前体茂铁的蒸汽被供应到CVD反应器中,在那里它在一氧化碳的大气中分解,形成纳米级的催化剂颗粒。在它们表面,一氧化碳(CO)歧化-同时氧化和还原-发生,最后SWNTs生长。反应器出口的气流经过过滤,SWNTs被收集到硝基纤维素过滤器上。通过改变采集时间的长短,可以获得不同厚度的膜。重要的是,SWNT薄膜可以很容易地通过干燥的沉积或在其独立的形式中使用,也就是说,没有底物。这种方法可以生产高质量的纳米管,没有无定形的碳杂质。 由于SWNTs中的所有碳原子都位于它们的表面,所以相对容易改变这种独特材料的电性。我们可以通过将掺杂剂加入纳米管或用电子受体或受体分子涂层来提高薄膜的电导率,”Skoltech的Albert Nasibulin教授说。在他们的研究中,科学家们在样本中涂上了氯化金,其溶液充当了兴奋剂,并通过将碘和氯化铜填充在适当的蒸汽中,从纳米管中获得薄膜。这样的处理增加了填充管的电荷载体密度,减少了它们之间的接触电阻,使柔性透明的电极和材料具有选择性电荷转移,用于光电子和自旋电子学。 为了在电子产品中使用,电影需要是有效的电荷载体,所以物理学家们研究了他们介电常数的宽带谱。但柔性电子技术也将要求薄膜是透明的,因此它们的光学导电性也被测量了。这两种分析都是在一个广泛的温度范围内进行的,从绝对零度以上到室温。特别感兴趣的是在特拉赫兹和远红外线区域获得的数据。虽然先前的研究结果指出了tera赫兹电导率光谱的峰值(根据研究的不同,频率在0.4到30之间),但这篇论文并没有明确指出这一现象。作者将这样的结果归因于他们电影的高质量。 由于分析了1000 cm- 1以下频率下的薄膜的光学和介电特性,揭示了典型的导电材料的光谱特征,如金属,研究小组决定采用由Paul Drude开发的相应的电导率模型。根据这个模型,导体中的电荷被自由的载体所转移:就像理想气体分子一样,它们在晶格中的离子之间移动,与它的振动、缺陷或杂质相碰撞。在这项研究中,电荷载体也分散在单个纳米管的交叉处的能量屏障上。然而,正如分析所指出的那样,这些障碍是无关紧要的,并且允许电子在胶片上自由移动。利用德鲁德模型,可以定量地分析各载体有效参数的温度依赖性,即浓度、移动性、平均自由程和碰撞时间之间的关系,这对电影的电动力特性负责。 “我们的研究清楚地表明,tera赫兹光谱学为研究宏观尺度碳纳米管薄膜的电导率机制提供了一种有效的工具,并确定了非接触方式电荷载体的有效参数。”我们的研究结果表明,这些薄膜可以成功地作为各种微电子和纳米电子器件中的组件或组件使用,”MIPT的Terahertz光谱实验室的副主任埃琳娜·朱可娃说。 这篇报道的研究得到了俄罗斯联邦教育和科学部的支持(项目5 - 100,联邦目标项目批准号)。RFMEFI59417X0014)和俄罗斯基础研究基础(第15 -12- 30041号)。 ——文章发布于2017年11月23日