《2021年3月CRISPR/Cas最新研究进展》

  • 来源专题:生物安全知识资源中心 | 领域情报网
  • 发布时间:2021-04-01
  • 基因组编辑技术CRISPR/Cas9被《科学》杂志列为2013年年度十大科技进展之一,受到人们的高度重视。2020年10月,德国马克斯-普朗克病原学研究所的Emmanuelle Charpentier博士以及美国加州大学伯克利分校的Jennifer A. Doudna博士因在CRISPR-Cas9基因编辑方面做了的贡献荣获2020年诺贝尔化学奖。

    CRISPR是规律间隔性成簇短回文重复序列的简称,Cas是CRISPR相关蛋白的简称。CRISPR/Cas最初是在细菌体内发现的,是细菌用来识别和摧毁抗噬菌体和其他病原体入侵的防御系统。

    018年11月26日,中国科学家贺建奎声称世界上首批经过基因编辑的婴儿---一对双胞胎女性婴儿---在11月出生。他利用一种强大的基因编辑工具CRISPR-Cas9对这对双胞胎的一个基因进行修改,使得她们出生后就能够天然地抵抗HIV感染。这也是世界首例免疫艾滋病基因编辑婴儿。这条消息瞬间在国内外网站上迅速发酵,引发千层浪。有部分科学家支持贺建奎的研究,但是更多的是质疑,甚至是谴责。

    1.Nat Commun:科学家开发出新型基因编辑工具来纠正诱发人类遗传性疾病的突变

    doi:10.1038/s41467-021-21559-9

    近日,一项刊登在国际杂志Nature Communications上的研究报告中,来自新加坡A*STAR研究所等机构的科学家们通过研究开发了一种名为C-G碱基编辑器(CGBE, C-to-G Base Editor)的基于CRISPR的基因编辑器,其或能帮助纠正诱发人类遗传性疾病的突变。

    CGBE编辑器推动了科学家们广泛采用CRISPR-Cas9技术来使得对人类基因组进行“分子手术”成为可能,CRISPR-Cas9技术目前能用来干扰靶向基因,但当需要对特定序列进行精确更改时,这种技术的效率就会降低;而CGBE编辑器能通过实现有效和精准的基因改变来解决科学家们所面临的问题;其主要由三部分组成:1)修饰后的CRISPR-Cas9能定位突变的基因并将整个编辑器聚焦于这一基因;2)一种能从化合物种移除氨基基团的脱氨酶能靶向缺失的碱基C,并将其进行替换;3)最后,蛋白质能够开启细胞机制来利用碱基G取代有缺陷的碱基C;这就能够帮助研究人员实现从C到G的直接转换,并能纠正突变从而治疗人类遗传性疾病。

    2.Nature子刊:CRISPR技术揭示癌症扩散的机制

    doi:10.1038/s42003-021-01912-w

    近日,惠康桑格研究所(Wellcome Sanger Institute)科学家的最新研究表明,以前与癌症无关的基因在某些癌症向肺部的扩散中起关键作用。研究小组发现,当基因LRRN4CL在小鼠中过度表达时,皮肤癌黑色素瘤更可能转移到肺部。

    该研究于近日发表在《Communication Biology》杂志上,该研究还证实LRRN4CL的过表达与结肠癌,乳腺癌和膀胱癌向肺的转移有关。

    3.eLife:新型全基因组CRISPR筛选技术或能发现与癌症发生相关的关键通路

    doi:10.7554/eLife.63603

    近日,一项刊登在国际杂志eLife上的研究报告中,来自范德堡大学等机构的科学家们通过研究开发了一种新型全基因组CRISPR筛选技术,其或能帮助揭示80%-90%的肿瘤是如何生长的。这种新方法能够检测一种特殊的遗传开关,而该开关能诱导持续性的细胞分裂(癌症开始的标志物)。

    文章中,研究人员共对4000万个上皮细胞进行了筛选,来避免错过任何可能的筛选,但要想在如此庞大的数量中找到一个令人感兴趣的基因就好像大海捞针一样困难;为了解决这个问题,研究人员开发了一种策略,即利用不同的颜色来标记处于不同细胞周期阶段的细胞,从而对其进行分类,在筛选过程中,研究人员发现了一种众所周知的肿瘤抑制因子NF2。让他们惊讶的时,通过剔除激活机体先天性免疫力的蛋白TRAF3,细胞就会停止接收休息信号。尽管此前他们并未发现TRAF3与密度依赖性的细胞增殖相关,但本文研究结果表明,如果没有该蛋白的话,无论细胞生长地多密集,其都会继续进行分裂;这一特征与癌症发生有关,因此这一特征或许具有重要的意义。

    4.Nat Commun:新方法促进抗体类药物开发

    doi:10.1038/s41467-021-21518-4

    近年来,治疗性抗体已经改变了癌症和自身免疫性疾病的治疗方法。现在,瑞典隆德大学的研究人员基于 “遗传剪刀” CRISPR-Cas9开发了一种新的高效方法,该方法可促进抗体开发。该发现发表在《Nature Communications》杂志上。

    抗体药物是增长最快的一类药物,几种治疗性抗体用于治疗癌症。它们有效,通常无副作用,并通过识别体内异物而受益于人体自身的免疫系统。通过与细胞上的特定靶分子结合,抗体可以激活免疫系统,或引起细胞“自杀”。

    5.Stem Cells:GLI1基因有助于治疗多种癌症

    doi:10.1002/stem.3341

    近日,芝加哥安·罗伯特·H·卢里儿童医院的斯坦利·曼恩儿童研究所的科学家发现,促癌的GLI1基因的DNA内的一个区域直接负责调节该基因的表达。这些发现发表在《Stem cell》杂志上,暗示GLI1内的这一区域可能被作为癌症治疗的靶标,因为关闭GLI1会打断癌症的过度细胞分裂特性。

    共同资深作者Philip Iannaccone教授说:“从以前的研究中,我们知道GLI1驱动着导致许多癌症的持续的细胞增殖,而且该基因也刺激了它自身的表达。我们在人类活体胚胎干细胞中建立了去除GLI1调控区的功能,从而消除了GLI1的表达并阻断了其活性。这些发现是有希望的,并且可能指向癌症的治疗靶标。”

    Iannaccone博士及其同事使用CRISPR基因编辑技术删除了人类胚胎干细胞中GLI1 与DNA的结合区,从而干扰了该基因驱动血液,骨骼和神经细胞胚胎发育的正常活动。

    6.Science Advances:微针辅助基因组编辑可协同治疗炎症性皮肤病!

    doi:10.1126/sciadv.abe2888

    近日,来自中国浙江大学的一个研究小组在Science Advance上发表题为《Microneedle-assisted genome editing: A transdermal strategy of targeting NLRP3 by CRISPR-Cas9 for synergistic therapy of inflammatory skin disorders》的研究论文。

    该研究发现利用微针辅助基因组编辑技术,使CRISPR-Cas9蛋白经皮靶向控制炎症因子合成基因,可协同治疗炎症性皮肤疾病。

    7.Science:CRISPR基因沉默机制开拓慢性疼痛新疗法

    doi:10.1126/science.abi4517

    近日,美国加州大学圣地亚哥分校的一个研究小组在顶尖期刊Science上发表题为《Gene-silencing injection reverses pain in mice》的研究论文。

    研究通过一项有趣的验证研究表明,CRISPR基因疗法可能是治疗慢性疼痛的阿片类药物的替代品。初步研究结果表明,在暂时抑制与疼痛状态相关的基因活动后小鼠的疼痛敏感性降低。

    8.Molecular Therapy:治一次管3年!基因编辑展现长效降低胆固醇能力

    doi:10.1016/j.ymthe.2021.02.020

    最近,由美国宾夕法尼亚大学基因治疗专家团队发表在Molecular therapy杂志上的新研究,通过对PCKS9基因的编辑,实现了基因编辑治疗的两个关键目标:安全性和持久性。研究首次报道,一次性基因编辑可以显著降低动物体内的PCSK9蛋白和LDL-C水平长达3年之久!

    研究人员使用了由Precision BioSciences公司开发的ARCUS基因组编辑技术平台。试图确定通过腺相关病毒(AAV),将靶向PCSK9基因的上述编辑西永递送到非人灵长类动物(NHP)肝脏中,随后进行长达3年的监测。

    结果显示,经过治疗的动物表现出循环PCSK9和LDL-c的持续减少,其中PCSK9蛋白水平持续降低了85%,而LDL-C水平持续降低56%。同时PCSK9位点的基因编辑十分稳定,脱靶率低,肝脏组织病理没有发现明显的不良变化。

    此外,在3年期间,肝脏细胞已经经历了多次的迭代,这些结果意味着基因编辑对基因组的改变被传递到新一代的肝细胞中,支持PCSK9和LDL-C水平的降低是永久性的。这些研究表明,体内靶向基因破坏发挥了持久的治疗效果,同时并没有发生明显的不良反应,因此结果支持临床转化。

相关报告
  • 《2021年1月CRISPR/Cas最新研究进展》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 发布时间:2021-03-03
    • 基因组编辑技术CRISPR/Cas9被《科学》杂志列为2013年年度十大科技进展之一,受到人们的高度重视。2020年10月,德国马克斯-普朗克病原学研究所的Emmanuelle Charpentier博士以及美国加州大学伯克利分校的Jennifer A. Doudna博士因在CRISPR-Cas9基因编辑方面做了的贡献荣获2020年诺贝尔化学奖。 CRISPR是规律间隔性成簇短回文重复序列的简称,Cas是CRISPR相关蛋白的简称。CRISPR/Cas最初是在细菌体内发现的,是细菌用来识别和摧毁抗噬菌体和其他病原体入侵的防御系统 2018年11月26日,中国科学家贺建奎声称世界上首批经过基因编辑的婴儿---一对双胞胎女性婴儿---在11月出生。他利用一种强大的基因编辑工具CRISPR-Cas9对这对双胞胎的一个基因进行修改,使得她们出生后就能够天然地抵抗HIV感染。这也是世界首例免疫艾滋病基因编辑婴儿。这条消息瞬间在国内外网站上迅速发酵,引发千层浪。有部分科学家支持贺建奎的研究,但是更多的是质疑,甚至是谴责。 即将过去的1月份,有哪些重大的CRISPR/Cas研究或发现呢?小编梳理了一下这个月生物谷报道的CRISPR/Cas研究方面的新闻,供大家阅读。 1.Science论文详解!基于CRISPR/Cas9的单细胞谱系追踪,揭示癌症异种移植物转移的速率、途径和驱动因子 doi:10.1126/science.abc1944 当癌症局限于身体的一个部位时,医生通常可以通过手术或其他疗法进行治疗。然而,大部分与癌症有关的死亡,是由于它的转移倾向,发送自己的种子(癌细胞),可能在全身生根。转移的确切时刻转瞬即逝,混杂在肿瘤中发生的数百万次分裂中。美国怀特黑德研究所成员Jonathan Weissman说,“这些事件通常是不可能实时监测的。” 如今,在一项新的研究中,Weissman领导的一个研究团队把CRISPR工具变成了实现这一目标的一种方法。Weissman实验室与加州大学伯克利分校计算机科学家Nir Yosef和加州大学旧金山分校癌症生物学家Trever Bivona合作,以进化生物学家看待物种的方式对待癌细胞,绘制出极其详细的家族树。通过探究这个家族树的分支,他们可以跟踪癌细胞的谱系,以找到单个肿瘤细胞何时变得异常,将其后代扩散到身体的其他部位。相关研究结果于2021年1月21日在线发表在Science期刊上,论文标题为“Single-cell lineages reveal the rates, routes, and drivers of metastasis in cancer xenografts”。 Weissman 说,“通过这种方法,你可以问这样的问题:‘这个肿瘤转移的频率有多高?转移的部位来自哪里?它们去了哪里?’通过能够跟踪肿瘤在体内的历史,你可以揭示肿瘤的生物学差异,而这通过常规手段是观察不到的。” 2.Cell论文解读!新研究揭示CRISPR/Cas9除了作为基因编辑工具,还可作为调节开关调节基因活性 doi:10.1016/j.cell.2020.12.017 在一系列针对实验室培养的细菌开展的实验中,来自美国约翰霍普金斯大学的研究人员发现了证据,表明广泛使用的基因切割系统CRISPR-Cas9还有另一种作用---作为CRISPR-Cas9基因的自我调节开关。它调低或调弱CRISPR-Cas9活性的作用,可能会帮助科学家们开发出用于研究目的的细胞基因工程新方法。相关研究结果于2021年1月8日在线发表在Cell期刊上,论文标题为“A natural single-guide RNA repurposes Cas9 to autoregulate CRISPR-Cas expression”。 科学家们长期以来一直致力于解开CRISPR-Cas9作用机制的精确步骤,以及它在细菌中的活性如何被调高或调低。这些研究人员在寻找激活或抑制酿脓链球菌CRISPR-Cas9基因切割系统的基因时,发现了这一系统如何运作的线索。 具体来说,这些研究人员在CRISPR-Cas9系统中发现了一个基因,当失活后,它会导致这种基因编辑系统在细菌中的活性急剧增加。这个基因的产物似乎是对Cas9进行重新编程,使其作为刹车(brake)起作用,而不是“剪刀”,以调低CRISPR系统的活性。 3.PNAS:动物模型揭示GPI锚定缺陷 doi:10.1073/pnas.2014481118 智力受损,运动障碍和发育迟缓是GPI蛋白缺陷导致的罕见疾病的典型表现。波恩大学和马克斯·普朗克分子遗传学研究所的研究人员使用基因工程方法制造了一种很好地模仿这些患者的小鼠。在该动物模型中的研究表明,在GPI锚定蛋白缺陷中,基因突变会损害大脑突触中刺激的传递。这些结果现已发表在《PNAS》杂志上。 就像船只在风暴和海浪中锚定在海底一样,GPI锚定(GPI =糖基磷脂酰肌醇)可以确保特殊的蛋白质可以保留在活细胞的外部。如果GPI锚因基因突变而无法正常运行,则会破坏细胞之间的信号传递和运输。波恩大学医院基因组统计和生物信息学研究所的Peter Krawitz教授解释说:“ GPI锚缺陷包括一组主要导致智力缺陷和发育迟缓的罕见疾病” 。 在大多数欧洲患者中发现了PIGV基因的突变。它编码一种对于GPI锚合成至关重要的酶。麦克斯-普朗克分子遗传研究所的研究人员及其同事使用CRISPR-Cas9基因编辑技术,根据患者模型对小鼠的PIGV基因进行了修饰。慈善机构医学遗传学和人类遗传学研究所的Miguel Rodríguezde los Santos说:“大量的行为测试表明,这种小鼠模型非常接近地反映了人类观察到的疾病。” 4.Science子刊:我国科学家基于全基因组筛选鉴定出促进细胞衰老的基因KAT7 doi:10.1126/scitranslmed.abd2655 在一项新的研究中,来自中国科学院、中国科学院大学、北京大学和首都医科大学宣武医院的研究人员使用两种类型的表现出加速衰老的人间充质前体细胞(hMPC)进行了基于CRISPR-Cas9的全基因组筛选。这两种hMPC分别源自携带导致加速衰老的疾病沃纳综合征(Werner syndrome)和早年衰老综合症(Hutchinson-Gilford progeria syndrome)的致病突变的人胚胎干细胞。相关研究结果发表在2021年1月6日的Science Translational Medicine期刊上,论文标题为“A genome-wide CRISPR-based screen identifies KAT7 as a driver of cellular senescence”。 这些作者鉴定出缺失后可减轻细胞衰老的基因,包括KAT7。KAT7编码一种组蛋白乙酰转移酶,在这两种早衰hMPC模型中排名最高。 KAT7的失活降低了组蛋白H3赖氨酸的乙酰化,抑制了p15INK4b的转录,缓解了hMPC衰老。此外,静脉给予编码Cas9/sg-Kat7的慢病毒载体,可减轻生理衰老小鼠以及表现出早衰表型的早衰性Zmpste24-/-小鼠的肝细胞衰老和肝脏老化,延长寿命。 5.Nature:基因编辑技术用于治疗早衰 doi:10.1038/s41586-020-03086-7 在最近一项研究中,研究人员成功地使用了DNA编辑技术,以延长与早衰相关的遗传变异的小鼠的寿命,早衰是一种罕见的遗传疾病,会导致儿童极端过早衰老,并可能大大缩短其预期寿命。该研究发表在《Nature》杂志上。 早衰症,也称为Hutchinson-Gilford早衰综合症,是由核纤层蛋白A(LMNA)基因的突变引起的,其中一个DNA碱基C改变为T。这种改变会增加有毒蛋白质progerin的产生,从而导致快速老化过程。 在这项研究中,研究人员使用了一种突破性的DNA编辑技术,该技术将单个DNA字母替换为另一个DNA字母而不损坏DNA,并且进一步研究改变这种突变可能如何影响小鼠早衰症状。 为了测试其碱基编辑方法的有效性,该团队最初与Progeria研究基金会合作,从早衰患者那里获得结缔组织细胞。该小组在实验室设置中使用了患者细胞内LMNA基因的基础编辑器。该治疗方法可修复90%的细胞中的突变。 6.Viruses:基因编辑蚊子有助于阻止寨卡病毒传播 doi:10.3390/v12111231 目前,一种预防寨卡病毒传播的方法已获得美国环境保护署(EPA)的批准,该方法将在2021年和2022年向佛罗里达礁岛释放超过7.5亿只经过基因改造的蚊子。这些“自杀性蚊子”经过基因改变,无法产生后代,或其后代无法存活到成年阶段,因此丧失了传播疾病的能力。但是,清除后代蚊子可能会导致环境复杂化,例如可能破坏食物链。密苏里大学的一项新研究提供了另一种选择:对蚊子进行基因改造以使其完全抵抗寨卡病毒。 密苏里大学兽医学院副教授Alexander Franz通过使用CRISPR基因编辑技术与科罗拉多州立大学的研究人员合作,产生了寨卡病毒无法在其体内复制的蚊子,因此无法通过咬人感染人类。 Franz说:“我们通过将人工基因插入到它们的基因组中,从而触发了一种免疫途径来识别和破坏寨卡病毒的RNA基因组。通过开发这些对病毒具有抵抗力的蚊子,疾病传播链条被阻断,因此不再可能传播给人类。” Franz补充说,这种基因修饰是可遗传的,因此后代蚊子也将对寨卡病毒产生抗性。 7.AJHG:研究揭示林奇综合征背后的基因突变 doi:10.1016/j.ajhg.2020.12.003 大肠癌是第三大最常见的癌症形式。尽管90%的病例在50岁以上的人群中,但年轻人中仍有较高的发病率,其中原因仍无法解释。家族病史是发展大肠癌的高危因素之一,通常建议具有此类病史的人比建议的45岁年龄进行更频繁的筛查测试或开始筛查。具有癌症家族病史的人通常通过基因检测来寻找与癌症风险相关的突变。但是,这些测试并不总能够提供有用的信息。 在《American Journal of Human Genetics》杂志上的一篇新论文中,密歇根州医学部人类遗传学系的Jacob Kitzman博士和一组合作者描述了一种筛选所谓的遗传变异体的方法,该变异体在人类希望找出可能导致疾病的突变。为此,他们参考了一种称为Lynch综合征的遗传病,也称为遗传性非息肉性结直肠癌。像BRCA1一样,林奇综合征背后的一些基因也得到了很好的描述。但是,“与Lynch综合征相关的基因中可能存在的遗传变异,对此科学家们基本上一无所知,” Kitzman说。 研究小组使用一种称为深度突变扫描的技术,着手测量基因MSH2中突变的影响,该基因突变是Lynch综合征的主要原因之一。他们使用CRISPR-Cas技术从人细胞中删除了MSH2的正常副本,并用MSH2基因中每个可能突变的文库代替了它。这产生了细胞混合物,其中每个细胞都携带一个独特的MSH2突变。用称为6-硫代鸟嘌呤的药物处理该细胞群,该化学疗法仅杀死具有MSH2功能变体的细胞。
  • 《2020年10月CRISPR/Cas最新研究进展》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 发布时间:2020-10-30
    • 基因组编辑技术CRISPR/Cas9被《科学》杂志列为2013年年度十大科技进展之一,受到人们的高度重视。今年10月,德国马克斯-普朗克病原学研究所的Emmanuelle Charpentier博士以及美国加州大学伯克利分校的Jennifer A. Doudna博士因在CRISPR-Cas9基因编辑方面做了的贡献荣获2020年诺贝尔化学奖。 CRISPR是规律间隔性成簇短回文重复序列的简称,Cas是CRISPR相关蛋白的简称。CRISPR/Cas最初是在细菌体内发现的,是细菌用来识别和摧毁抗噬菌体和其他病原体入侵的防御系统。 2018年11月26日,中国科学家贺建奎声称世界上首批经过基因编辑的婴儿---一对双胞胎女性婴儿---在11月出生。他利用一种强大的基因编辑工具CRISPR-Cas9对这对双胞胎的一个基因进行修改,使得她们出生后就能够天然地抵抗HIV感染。这也是世界首例免疫艾滋病基因编辑婴儿。这条消息瞬间在国内外网站上迅速发酵,引发千层浪。有部分科学家支持贺建奎的研究,但是更多的是质疑,甚至是谴责。 即将过去的10月份,有哪些重大的CRISPR/Cas研究或发现呢?小编梳理了一下这个月生物谷报道的CRISPR/Cas研究方面的新闻,供大家阅读。 1.Nat Commun:在小鼠体内利用CRISPR/Cas9成功地选择性消除肿瘤细胞而不影响健康细胞 doi:10.1038/s41467-020-18875-x CRISPR/Cas9基因编辑工具是推进包括癌症在内的遗传性疾病治疗的最有前途的方法之一,这一研究领域正在不断取得进展。如今,在一项新的研究中,西班牙国家癌症研究中心(CNIO)的Sandra Rodríguez-Perales博士及其研究团队取得了新的进展:利用这种技术消除了所谓的融合基因,这为在未来开发专门破坏肿瘤而不影响健康细胞的癌症疗法打开了大门。相关研究结果近期发表在Nature Communications期刊上,论文标题为“In vivo CRISPR/Cas9 targeting of fusion oncogenes for selective elimination of cancer cells”。 融合基因是来自两个不同基因的DNA片段不正确连接在一起的异常结果,这是细胞分裂过程中偶然发生的事件。如果细胞不能从这个错误中获益,它们就会死亡,融合基因也会被淘汰。但当这个错误导致生殖或生存优势时,携带这种融合基因的细胞将会增殖,融合基因及其编码的蛋白会触发肿瘤形成。Rodríguez-Perales解释说,“许多染色体重排及其产生的融合基因是儿童肉瘤和白血病的起源。”融合基因也被发现存在于前列腺瘤、乳腺癌、肺瘤和脑瘤等其他癌症中。总的来说,它们存在于高达20%的癌症中。 鉴于融合基因只存在于肿瘤细胞中,它们吸引了科学界的极大兴趣,这是因为它们是高度特异性的治疗靶点,攻击它们只会影响肿瘤而对健康细胞没有影响。这正是CRISPR/Cas9技术的作用所在。通过这项技术,人们可以靶向基因组的特定序列,就像使用分子剪刀一样,将DNA片段剪断和粘贴,从而以一种可控的方式修改基因组。在这项新的研究中,Rodríguez-Perales团队在尤文氏肉瘤和慢性髓细胞白血病(CML)的细胞系和小鼠模型中,利用CRISPR/Cas9切除导致肿瘤的融合基因,从而成功地消除肿瘤细胞。 2.Nature解读!科学家有望利用CRISPR-Cas9基因疗法治疗快乐木偶综合征! doi:10.1038/s41586-020-2835-2 出生时携带缺陷的母亲UBE3A基因的婴儿会患上一种名为快乐木偶综合征(Angelman syndrome)的罕见病,其是一种目前无法治愈且治疗非常有限的严重神经发育障碍。近日,一项刊登在国际杂志Nature上题为“Cas9 gene therapy for Angelman syndrome traps Ube3a-ATS long non-coding RNA”的研究报告中,来自北卡罗来纳大学等机构的科学家们通过研究表示,利用基因编辑和基因疗法等技术或有望恢复人类神经元培养物中UBE3A基因的功能并能有效治疗Angelman综合征模型的缺陷,相关研究结果或为后期科学家们治疗Angelman综合征提供了重要基础,同时也为治疗其它单基因障碍开辟了道路。 研究者Zylka表示,本文研究中我们揭示了如何利用CRISPR-Cas9基因疗法来治疗与Angelman综合征相关的多种疾病症状,Angelman综合征是由编码泛素蛋白连接酶E3A(UBE3A)的母源性基因拷贝的突变或剔除所引起的,父源性的UBE3A基因拷贝通常在后代机体神经元中处于沉默状态,因此母源性的UBE3A基因拷贝的缺失会导致大脑中大部分区域失去UBE3A酶类的功能,这一点非常关键,因为该酶能靶向作用蛋白进行降解,而靶向作用蛋白降解的过程对于维持大脑细胞的正常功能至关重要,当该过程出错时就会诱发Angelman综合征,这是一种脑部疾病,其症状包括严重的智力和发育障碍、癫痫发作、以及患者会出现语言、平衡、运动和睡眠等多种问题。 3.Sci Rep:科学家成功利用人工RNA编辑技术修复基因组遗传代码 有望治疗多种遗传性疾病 doi:10.1038/s41598-020-74374-5 目前并没有确定的疗法来治疗由点突变引起的多种遗传性疾病,近日,一项刊登在国际杂志Scientific Reports上的研究报告中,来自日本先进科学技术研究所等机构的科学家们通过利用人工的RNA编辑研究了一种治疗手段在治疗遗传性疾病上的可行性和有效性。尽管基因编辑技术作为一种基因修复技术备受关注,但诸如CRISPR/Cas9基因编辑技术或许会导致基因组DNAs发生永久性的改变,其可能会影响多个潜在的位点,目前想要在体内对所有靶向细胞实现精准的基因组编辑是非常困难的,所以研究人员就有可能在受精卵、胚胎或细胞中开展基因编辑工作,然而,基因编辑技术或许并不适合用于在人类中进行的基因疗法,此外,对基因组的编辑也会产生一些伦理性的问题。 研究人员认为,基因组编辑是一种适用于体外研究的方法,其或许还适用于对受精卵进行编辑,但目前仍然并不适用于患者机体;相反,RNA编辑所产生的改变并不是永久性的,因为其不会影响机体的基因组序列,而且能够按照序列特异性的方式来完成。因此,从治疗的目的来看,RNA的编辑比基因组编辑更加可取,人工定向的RNA编辑是一种重要的技术,其能修复基因并最终调节所编码蛋白质的功能,如今研究人员正在试图通过人工RNA编辑来修饰转录物的遗传密码,从而实现对遗传性疾病的治疗。 RNA编辑是生物体内广泛存在的一种生理性过程,其能通过单个基因产生具有不同功能的多种蛋白,在哺乳动物中,RNA链的C或A碱基能被碱基序列特异性地水解脱氨,即C被U替代,A被I(肌苷)替代。这些碱基的转换是A或C脱氨的结果,目前研究者发现ADAR和APOBEC家族中的酶类能催化这些碱基转换,随后还会改变RNAs中的遗传密码,这项研究中,研究人员首次利用APOBEC1成功进行了突变RNA中C-U的人工转换。 4.HGT:科学家有望利用mRNA疗法或CRISPR基因编辑技术治疗囊性纤维化 doi:10.1089/hum.2020.137 近日,一项刊登在国际杂志Human Gene Therapy上题为“Treating Cystic Fibrosis with mRNA and CRISPR”的研究报告中,来自佐治亚理工学院等机构的科学家们通过研究揭示了如何利用mRNA疗法或CRISPR技术来治疗囊性纤维化患者。 文章中,研究者表示,利用mRNA疗法或CRISPR基因编辑技术来治疗囊性纤维化(CF,Cystic Fibrosis)的潜力是可能的,这与患者机体的致病性突变似乎并无关联,目前囊性纤维化相关的临床试验结果表明,针对囊性纤维化的基因型不可知的基因疗法似乎是可行的。 5.深度解读:2020年诺贝尔化学奖授予CRISPR-Cas9基因编辑技术 2020年10月7日,瑞典皇家科学院已决定将2020年诺贝尔化学奖授予德国马克斯·普朗克病原学研究所的Emmanuelle Charpentier博士以及美国加州大学伯克利分校的Jennifer A. Doudna博士,以表彰她们在基因编辑领域的贡献。 Emmanuelle Charpentier和Jennifer A. Doudna发现了基因编辑技术中最犀利的工具之一:CRISPR / Cas9基因剪刀。通过该工具,研究人员可以非常高精度地改变动物,植物和微生物的DNA。这项技术对生命科学产生了革命性的影响,并且可以为新的遗传病以及癌症的治疗做出贡献。 6.PNAS:开发出超灵敏的SHERLOCK疟疾测试方法 doi:10.1073/pnas.2010196117 目前,四种主要的疟原虫物种---恶性疟原虫、间日疟原虫、卵形疟原虫和三日疟原虫---的存在是通过对血液样本的显微镜分析来确定的,在血液样本的红细胞中可以检测到疟原虫,或者通过所谓的快速诊断测试来确定特定的疟原虫蛋白(抗原)。 美国波士顿儿童医院传染病诊断实验室副医学主任、哈佛医学院病理学与医学副教授Nira Pollock博士说,“不幸的是,现有的快速诊断方法不能将所有四种疟原虫区分开来,这对启动针对性的治疗过程很重要,最重要的是,它们无法有效地检测无症状个体中的低数量疟原虫。” 哈佛医学院儿科副教授、波士顿儿童医院传染病高级副医师Jeffrey Dvorin医学博士补充道,“这些‘无症状携带者(asymptomatic carrier)’是传播疟疾的蚊子持续传播这种疾病的潜伏库,对于正在进行的全球消除疟疾的努力极为重要。” 如今,在一项新的研究中,Pollock及其同事们开发出一种可现场应用的超灵敏诊断测试方法,可特异性地检测有症状和无症状疟疾患者体内所有疟原虫物种的DNA序列。这种新的疟疾诊断方法将优化的10分钟快速样品制备方案与基于CRISPR的SHERLOCK系统相结合,在简单的报告装置中,再过60分钟就能实现高度特异性和灵敏度的疟原虫检测。相关研究结果近期发表在PNAS期刊上,论文标题为“Ultrasensitive CRISPR-based diagnostic for field-applicable detection of Plasmodium species in symptomatic and asymptomatic malaria”。 论文通讯作者、哈佛医学院怀斯生物启发工程研究所创始核心成员James Collins博士说,“这种可用于现场的SHERLOCK疟疾检测方法超越了世界卫生组织设定的理想测试方法的灵敏度和特异性要求,可用于检测所有主要疟原虫物种的无症状携带者中的低密度疟原虫。它的高度精简的设计可以为目前消除疟疾道路上的诊断瓶颈提供一种可行的解决方案,以便更广泛地实现低资源环境下的疟疾监测。” 7.Nat Immunol:关键基因调节免疫系统“刹车” doi:10.1038/s41590-020-0784-4 与大多数T细胞发起针对外来分子的免疫反应不同,调节性T细胞是人类免疫系统的和平使者,可在不需要时抑制炎症反应。现在,格拉德斯通研究所的研究人员与加州大学旧金山分校(UCSF)和慕尼黑工业大学(TUM)的科学家合作,绘制了有助于区分调节性T细胞与其他T细胞的基因网络。他们的发现可能导致增强或削弱调节性T细胞功能的免疫疗法。 Gladstone-UCSF基因免疫研究所所长Alex Marson表示:“将调节性T细胞生物学的遗传网络整合在一起,是寻找可改变这些细胞功能以治疗癌症和自身免疫疾病的药物靶标的第一步。” 在这项发表在《Nature Immunology》杂志上的新研究中,Marson及其合作者使用了基于CRISPR的基因编辑技术来改变调节性T细胞,选择性地去除了40种不同的转录因子。 然后,研究人员集中研究了在最初的筛选中作用最强的10个转录因子,并查看了成千上万个基因,以查看在改变的细胞中哪些基因被打开或关闭。他们总共对54,424个单个调节性T细胞进行了分析。 通过分析被这10个原始转录因子激活或沉默的基因类群,研究小组将涉及调控T细胞生物学的大量遗传程序网络整合在一起。研究表明,此前研究较少的转录因子HIVEP2对调节性T细胞功能有很强的作用。在小鼠的后续研究中,科学家发现去除HIVEP2基因会降低调节性T细胞平息炎症的能力。