《科学家揭示人类T细胞白血病病毒感染并扩散的分子机制》

  • 来源专题:生物安全知识资源中心 | 领域情报网
  • 编译者: huangcui
  • 发布时间:2019-01-08
  • 近日,一项刊登在国际杂志Journal of Virology上的研究报告中,来自明尼苏达大学的科学家们通过研究开发了一种新型策略,或有望阻断一种高传染性病毒在澳大利亚中部偏远地区的传播,人类T细胞白血病病毒1型(HTLV-1)在社区成年人中的感染率超过了40%,HTLV-1是科学家们发现的首个人类癌症病毒,其会诱发白血病和淋巴瘤。

    研究者Louis Mansky博士表示,如今我们已经深入阐明了HTLV-1如何产生病毒颗粒来扩散到机体的其它细胞中,这项研究中我们制造了HTLV-1病毒主要结构蛋白Gag的突变,并阐明了这些突变如何影响HTLV-1颗粒的产生,HTLV-1病毒在细胞间的扩散需要产生病毒颗粒,这对于机体中感染的建立至关重要。

    研究者发现,HTLV-1中Gag蛋白的关键区域中含有关键的氨基酸残基,而这些氨基酸残基对于产生病毒颗粒非常重要。Mansky说道,通过制造这些突变,我们发现,Gag蛋白的结构对于制造新型的病毒颗粒非常重要。HTLV-1能够通过多种方式传播,比如性接触、输血或母乳喂养方式等,作为一种致癌因素,HTLV-1还会导致机体出现其它严重的健康问题,并诱发脊髓慢性进行性疾病的发生。

    这项研究中,研究者发现,用来产生HTLV-1病毒颗粒的关键病毒蛋白能够以一种与HIV等相关病毒不同的方式来进行装配;最后研究者Mansky说道,目前我们对HTLV-1的理解较少,本文研究结果或能帮助我们更好地理解HTLV-1感染机体并开始扩散的分子机制;后期研究人员还需要进行更为深入的研究来理解HTLV-1病毒颗粒产生的分子特性,同时研究者还希望能够开发出有效抑制HTLV-1病毒扩散的新型疗法。

  • 原文来源:https://jvi.asm.org/content/92/14/e00333-18
相关报告
  • 《JCI:揭示人类T细胞白血病病毒将免疫细胞转化为癌细胞的分子机制》

    • 来源专题:生物安全知识资源中心—领域情报网
    • 编译者:hujm
    • 发布时间:2021-12-20
    • 人类T细胞白血病病毒1型(HTLV-1,Human T cell leukemia virus type 1)主要感染CD4+ T细胞并会在被感染个体机体中诱发慢性持续性感染,有些人就会进展为成人T细胞白血病/淋巴瘤(ATL,adult T-cell leukemia/lymphoma);HTLV-1还会改变细胞的分化、激活和存活,然而,目前研究人员并不清楚是否以及这些改变如何促进被感染细胞发生恶性转化。近日,一篇发表在国际杂志Journal of Clinical Investigation上题为“HTLV-1 infection promotes excessive T cell activation and transformation into adult T cell leukemia/lymphoma”的研究报告中,来自帝国理工学院等机构的科学家们通过研究揭示出了HTLV-1病毒如何引发某些人群患上罕见白血病的,同时还提出了线索有效阻断这种情况的发生。 文章中,研究人员利用单细胞分析揭示了该病毒如何过度激活T细胞(血液中的关键免疫细胞),从而促进其发生癌变。称之为ATL的罕见癌症大约会在5%感染HTLV-1的患者中发生,但仅仅是在最初感染的多年中会这样;HTLV-1能专门感染T细胞并将其转化为白血病细胞,但由于时间上存在滞后,这就使得研究人员确定这种转化是如何发生的变得很难。 ATL能缓慢或积极性地进展,但目前针对高级别ATL并没有标准的疗法,而且在患者使用化疗和抗病毒疗法后,该疾病还有着非常高的复发率。本文研究结果表明,病毒能够劫持T细胞的激活机器,并导致其持续处于高水平的激活状态,并逐渐进展为恶性肿瘤。研究者Yorifumi Satou说道,虽然仅有一小部分HTLV-1感染的患者会进展为ATL,但据估计,全球大约有500万只1000万该病毒的携带者,而且在一些地区该疾病该是地方性的,比如在日本就有大约100万名患者。 研究人员认为,目前非常有必要理解病毒如何让T细胞与人类机体作对,本文而研究揭示了发生这种改变的一种关键机制,并为研究人员提供了一定的研究方向从而寻找干预这一过程的方法,其或有望帮助潜在预防癌症的进展。白血病是一种起源于血液或骨髓细胞的癌症,其主要特点为异常白细胞的数量大幅增加,而T细胞是一种特殊类型的白细胞,其在抵御外来入侵者上扮演着至关重要的角色,比如细菌和病毒感染等。 HTLV-1病毒能将其自身插入到一类T细胞中,并开始以一种潜伏状态停留在那里,其并不会释放任何病毒颗粒或者引发任何不良影响,对于许多这种病毒携带者而言,这种情况或许从未改变,但在大约5%的携带者中,经过几十年的潜伏,病毒机会重新苏醒并影响T细胞的功能。文章中,研究人员对来自无病毒捐赠者、健康病毒携带者和ATL患者机体超过8.7万个T细胞进行分析,研究者对这些细胞的RNA进行测序旨在揭示病毒与T细胞之间相互作用的机制。 研究者表示,在进展为ATL的人群中,HTLV-1会让受感染的T细胞变得高度活化和过度反应,从而导致其过量产生维持其不断增殖的蛋白,同时还能帮助病毒避免机体其它通常会清除有害细胞的免疫系统的攻击。研究者认为,这些改变会使得过度反应的T细胞对DNA损伤变得更加易感,比如通过化学制剂或辐射,这就会加速T细胞过渡为癌变状态。研究者Ono表示,对相关过程进一步研究或为后期开发新型疗法策略奠定一定的基础,比如,T细胞的慢性激活也能通过阻断告诉细胞激活的信号通路的分子来被抑制,或者,新型疗法就能通过靶向作用激活T细胞所产生的蛋白质来帮助细胞增殖。 综上,本文研究结果表明,HTLV-1感染的细胞或能上调HLA II类分子,并能扮演耐受性抗原呈递细胞来诱导抗原特异性T细胞的过敏,研究人员揭示了在单细胞水平下HTLV-1所介导的转化和免疫逃逸过程的精细化分子机制。 原始出处: Benjy J.Y. Tan,Kenji Sugata,Omnia Reda, et al. HTLV-1 infection promotes excessive T cell activation and transformation into adult T cell leukemia/lymphoma, Journal of Clinical Investigation (2021). DOI: 10.1172/JCI150472
  • 《Science:我国科学家揭示植物干细胞免受各种病毒感染机制》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:hujm
    • 发布时间:2020-10-19
    • 植物之所以能够无限地生长,是因为它们含有由植物干细胞组成的分生组织(meristem),这些植物干细胞具有独特的能力,能够将自己转化为构成植物的各种特定细胞,并在适当的时候分裂,并根据需要产生任何类型的新细胞。分生组织存在于所有植物的顶端,使得它们能够长出新的茎或新的根。在树木中,分生组织也存在于树干中,能增加树干的周长。 自20世纪50年代以来,人们就知道,位于植物顶端的分生组织,即茎尖分生组织(shoot apical meristem, SAM),具有非凡的能力:即使植物的其他部分被病毒彻底感染,它们也能在产生特定的子细胞时保持无病毒状态。这种情况不仅仅是对一种或甚至几种病毒,而是对各种各样的病毒都是如此。 此后,科学家和农民们利用植物的这个最重要部分的抗病毒能力,从受感染的供者植物中培育出新的植物,但不会把病毒传给所培育出的植物。他们只需剪下植物顶端的一小部分,在试管或培养皿中培养一段时间,然后重复几次,这种剪下来的植物部分通常生长出无病原体的植物。 在一项新的研究中,来自中国科学技术大学、广州大学、四川大学和德国海德堡大学的研究人员对这种不可思议的能力提出了新的见解。相关研究结果发表在2020年10月9日的Science期刊上,论文标题为“WUSCHEL triggers innate antiviral immunity in plant stem cells”。论文通讯作者为中国科学技术大学的Zhaoxia Tian和Zhong Zhao。 这些研究人员将黄瓜花叶病毒(cucumber mosaic virus, CMV)接种到阿拉伯芥(thale cress)植物上,并观察发生了什么。 当黄瓜花叶病毒向SAM扩散时,他们注意到这种病毒在到达一个表达WUSCHEL的区域(下称WUSCHEL表达区域)之前就停止了。通过仔细观察调节蛋白WUSCHEL在这个区域的分布,他们发现这种病毒在接种后试图站稳脚跟的地方出现了更多的WUSCHEL。作为一种极其重要的蛋白,WUSCHEL在植物胚胎发育的早期阶段,在决定干细胞命运的过程中起着关键的调节作用,同时也负责监督SAM,使得它们维持在未分化的状态,并确定它们会产生什么样的子细胞。 他们随后将黄瓜花叶病毒直接接种到阿拉伯芥的干细胞中及其正下方,发现这种病毒只在后一个区域传播。Zhao说,“一种称为地塞米松(dexamethasone)的化学物可以诱导我们测试的植物产生WUSCHEL蛋白。因此,接下来,我们给阿拉伯芥接种更多的黄瓜花叶病毒,然后对其中的一些植物进行地塞米松处理,还有一些植物未接受这种处理。”在未接受地塞米松处理的阿拉伯芥植物中,大约89%的植物感染了这种病毒,但在接受地塞米松处理的阿拉伯芥植物中,90%的植物并未受到这种病毒入侵。 WUSCHEL是如何战胜这种病毒的呢?这些研究人员发现,WUSCHEL蛋白的作用是抑制黄瓜花叶病毒蛋白的产生。 病毒不能自己制造蛋白,而是劫持有机体的蛋白装配线来产生它们自己的病毒拷贝。对调节SAM有很大作用的WUSCHEL蛋白实质上已经冻结了所有的蛋白产生---无论是植物自己的蛋白产生还是被这种病毒劫持时的蛋白产生--从而阻止了这种病毒的复制。 Zhao说,与阿拉伯芥中直接产生WUSCHEL蛋白的基因相似的基因在植物王国中非常普遍,因此这些研究人员对“这种策略是否可以应用于育种以在未来获得广谱抗病毒作物品种”很感兴趣。