《美国陆军研究实验室计划利用原子探索纳米材料3D打印防弹衣》

  • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
  • 编译者: 冯瑞华
  • 发布时间:2018-09-04
  • 美国陆军研究实验室(ARL)的材料科学家正在使用最先进的3D成像原子探针技术分析原子级的金属和陶瓷样品。这项研究旨在解决下一代防弹衣系统的材料内部结构,以保证士兵安全。

    为了了解他们正在使用的尺寸,想象一下头发的宽度。样品比人发小一千倍。“原子探针为我们提供了原子级的三维重建。”实验室武器和材料研究理事会的材料科学家Chad Hornbuckle博士说。 “当你看到由数百万个点构成的,这些点实际上是单个原子。它基本上是世界上唯一能够在原子水平上实现这一目标的机器。有些机器,如透射电子显微镜或TEM,进行化学分析,但它不精确。你可能只有一次效果,但如果化学变化,下次你会得到完全不同的效果,如果你无法控制化学反应,就无法控制这些属性。” 研究人员通过喷砂或铣削产生非常尖锐的尖端,准备对金属和陶瓷样品进行分析。然后使用双光束扫描电子显微镜施加化学元素镓。样品准备好后,将它们插入原子探针中。探头内部是超冷真空。使用激光或电压脉冲,科学家们将小尖端上的原子电离,导致各个离子从表面蒸发。然后分析和识别蒸发的离子,这就形成近原子分辨率的3D模型。 电沉积是一种产生薄金属涂层的过程。我们在使用其他方法识别这个阶段时遇到了问题,但原子探测器确切地告诉我们它是什么以及它是如何分配的。这台机器的功能令人印象深刻,你可以实时看到原子出现。再次,它是在纳米尺度,所以它比所有其他表征技术更精细。原子探针很容易告诉我们,两种不同类型的氢化铜相,这不是我们可以检测到的其他方法。陆军使用的那种原子探测器是美国发现的少数几种原子探测器之一。 “由于原子探针的数量有限,大学也会自带样品进行分析。我们合作的一所大学是利哈伊大学。”霍恩巴克尔说。 “起初,这次合作更多的是相互交流的专业知识,我在原子探针中分析了他们的一些样品,并使用他们的像差校正透射电子显微镜来分析我们的一些铜钽样品。我们现在继续这种合作。”陆军还与阿拉巴马大学合作进行原子级分析。这些伙伴关系使陆军能够使用大学实验室设备。 通过这项研究获得的基础知识将适用于当前的陆军的问题以及未来陆军相关材料的开发。 .

相关报告
  • 《美国陆军研究3D打印陶瓷防弹衣,模仿鲍鱼壳机构》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2019-01-23
    • 陶瓷是最硬的材料之一,这就是为什么防弹衣里面会使用陶瓷材料的原因。陶瓷如此坚硬,可以减少射弹的动能质量和穿透力。陶瓷也非常脆,这意味着陶瓷装甲板在被击中时通常会破裂。但陶瓷的脆性也会受到几何形状的影响,某些形状和成分比其他形状和成分更耐用。2019年1月22日,南极熊从外媒获悉,美国陆军研究实验室的材料科学家们在鲍鱼壳的启发下进行3D打印陶瓷装甲。 加利福尼亚大学圣地亚哥分校的ACerS成员和材料科学与工程博士候选人Joshua Pelz设计了基于螺旋钻的定制挤出机,用于研究带有渐变的3D打印天线,但是当他开始使用陶瓷化合物时他的项目发生了大转变: “我开始致力于这个项目,以创建具有分级结构的下一代天线,然后转变为使用装甲陶瓷材料,如碳化硼和碳化硅,并尝试生产具有梯度或内部结构的零件,这是传统陶瓷成型技术无法生产的。” Pelz为他的陶瓷打印改进了Lulzbot TAZ 3D打印机。螺旋钻连接到风扇速度控制器,允许以任何比例混合两种不同的浆料。陆军显然对这项研究充满热情,因为陶瓷装甲自引入以来大大减少了伤亡。 通过在鲍鱼壳的设计之后模拟装甲,理论上装甲将更耐用并且穿着更舒适,因为它将更自然地包裹在人体的轮廓周围。期待很快看到3D打印的装甲原型。
  • 《美国陆军研究实验室探索3D打印软体机器人》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2018-04-19
    • 深海里的软体生物一直都是神秘而暗黑的存在,像章鱼和乌贼这样的头足类动物更是机器人世界的灵感来源。 The U.S. Army Research Laboratory与明尼苏达大学合作,对软体机器人进行探究。该研究小组近期发表了一份研究报告:面对庞大的障碍时,无脊椎机器人拥有天然的优势,可以挤进或绕开障碍物。因此该研究小组展开了对软体机器人的制造。 与2016年12月问世的全球首个全软体机器人 Octobot不同,Octobot是一个彰显极简主义的机器人设计,目的在于向外界展示这样的软体机器人是可以成为现实的。而此次的软体机器人一旦制成将投入军方使用。 ARL的研究员Ed Habtour在一份研究报告中表示:"软体机器人必须拥有高度的结构灵活性和分配控制,才能潜移默化地进入受限的空间内。需要长时间对其进行操作指控,来模拟生物的形态、培养机器人对环境适应性。"在完成形态的塑造之后,软体机器人依旧需要时间来复杂的外部环境。 3D打印柔软的机械抓取手 除了躲避障碍物外,在抓持和操作未知物体方面,软体系统有着天然优势。通过培育对环境的适应性,软性机器人的抓取器可以改变本身的形态抓取各种目标物体;此外,在医疗领域,软体机器人可以通过与人体的交互运动,来帮助病人进行康复。 研究的重要突破口是新一代3D打印技术的提升。制造Octobot时使用的3D打印技术是为了让Octobot完成密封定型;其他的所有部分都需要手动制作完成。而此次的软体机器人所需的配置都可以由3D打印技术完成。 3D打印技术最初是应用于模具制造、工业设计等领域,后逐渐用于一些产品的直接制造。在制造业中,建筑、汽车,航空航天等早已应用;而后在食品、服装、医疗、生物等也均有发展,如点心、鞋子、假肢、器官、细胞等都已经实现了3D打印。