《青岛能源所揭示工业产油微藻二氧化碳浓缩机制全局特征》

  • 来源专题:中国科学院文献情报先进能源知识资源中心 |领域情报网
  • 编译者: guokm
  • 发布时间:2019-09-19
  • 人类社会排放的CO2等温室气体,造成全球气候变暖和海洋酸化,探索和实施碳减排途径和方法已刻不容缓。利用微藻将工业源CO2直接转化为生物燃料,在碳中性能源体系的建设中具有重要的战略意义。但是,工业微藻如何高效固定CO2呢?青岛能源所单细胞中心等发现,作为一种工业产油微藻,微拟球藻细胞集至少三种碳浓缩机制(CO2 Concentrating Mechanism,CCM)的特征于一身。这一全局性的CCM系统结构蓝图的揭示,为在工业微藻中设计和改造“超级二氧化碳固定模块”奠定了基础。

      目前地球大气中的CO2含量约0.04%。为了将环境中如此低浓度的CO2富集在叶绿体中Rubisco(核酮糖-2-磷酸羧化氧化酶)的周围,从而进行高效的光合作用,自养生物进化出了形形色色的CCM系统,在细胞代谢网络中主动地供应或回收无机碳分子。因此,CCM系统蕴含着挖掘和改造微藻细胞工厂固碳能力的奥妙。

      微拟球藻(Nannochloropsis spp.)是一种可利用海水或淡水、在室外大规模培养的工业微藻,具有生长速度快、油脂含量高、合成EPA等高值不饱和脂肪酸等优点,因此已经成为工业产油微藻分子育种的主要研究体系之一,也支撑着国内外许多微藻规模固定二氧化碳的示范工程。

      单细胞中心魏力与德国鲁尔大学Mohamed El Hajjami等合作,综合运用条件序列和时间序列的转录组、蛋白组和代谢组等系统生物学手段,全面解析了海洋微拟球藻(N. oceanica)在低碳条件下特异性启动的基因群体和代谢模块,从而揭示了全局性的CCM系统结构蓝图。研究发现,在微拟球藻细胞的固碳体系中,至少存在三种CCM的特征,包括以碳酸酐酶和碳酸氢盐转运体为主导的生物物理CCM、类似高等植物C4光合固碳途径的生物化学CCM,以及以线粒体碳酸酐酶和呼吸链为主的本底CCM。而且支撑这些特征的具体机制,与实验室模式真核微藻如莱茵衣藻(绿藻)和三角褐指藻(硅藻)等相比,具有相当显著乃至让人惊异的差异。这些全基因组水平的发现,为在工业产油微藻中系统性地设计和构建“超级二氧化碳固定模块”奠定了基础。

      该工作由青岛能源所单细胞中心徐健研究员与德国鲁尔大学Ansgar Poetsch教授主持,并得到了美国德克萨斯技术大学周文序教授和中国科学院水生所胡强研究员等的帮助。该研究获得了国家自然科学基金、中国科学院CO2重点部署项目和研究所“一三五”项目的支持。

相关报告
  • 《青岛能源所开发出高CO2耐受工业产油微藻》

    • 来源专题:中国科学院文献情报先进能源知识资源中心 |领域情报网
    • 编译者:guokm
    • 发布时间:2019-03-22
    • 工业微藻能够将阳光和烟道气直接转化为生物柴油,因此是应对全球气候变暖的重要举措之一。然而烟道气中高浓度的CO 2 及其导致的酸性培养条件,往往抑制了微藻的生长,因此提高CO 2 耐受性是设计与构建超级光合固碳细胞工厂的关键瓶颈之一。近期,青岛能源所单细胞中心通过逆转进化时针的研究思路,率先阐明了工业微藻应对高浓度CO 2 的机制,并开发出高CO 2 耐受的工业产油微藻细胞工厂。这一工作不仅对于工业烟道气直接转化生物柴油具有应用价值,对于人类生存空间的拓展也有重要意义。该成果于3月21日在线发表于《Metabolic Engineering》。    人类活动排放的CO 2 等温室气体,导致了全球气候变化和海洋酸化等重大环境和社会问题。利用工业产油微藻将烟道气等工业CO 2 排放源直接转化为柴油等先进生物燃料,对于减少温室气体排放、遏制全球气候变暖具有重大的战略意义。包括微藻在内的海洋浮游植物千百万年来适应了地球大气中0.04%的CO 2 含量,每年固定了全球CO 2 固定量的40%。但是,烟道气中的CO 2 含量高于5%,是大气碳含量的百倍以上。由此导致的培养环境酸化,在降低了生物污染发生几率的同时,也通常会抑制工业产油微藻的生长与繁殖,从而大幅度降低了工业生物固碳产油过程的经济性。微拟球藻(Nannochloropsis spp.)是一种在世界各地均可室外大规模培养的工业产油微藻。它们具有生长速度快、二氧化碳耐受能力强、海水淡水均可培养、遗传操作较完善等突出优点。单细胞中心魏力等研究人员,提出其利用和耐受CO 2 均与碳浓缩机制(Carbon Concentrating Mechanism; CCM)有关的科学假设。首先,运用系统生物学思路,结合亚细胞定位等研究手段,挖掘到与高CO 2 应激相关的一个关键靶点,即位于细胞质内的一个特殊的碳酸酐酶(Carbonic anhydrase;CA2)。与5% CO 2 培养下相比,CA2在极低CO 2 浓度下被特异性地激活,因此是CCM系统感受与应对环境中CO 2 浓度的关键基因。    进而,研究人员提出,既然CCM是藻类从远古大气(高浓度CO 2 环境)逐渐适应当前大气(低浓度CO 2 环境)的进化结果,如果人为地破坏或抑制CCM活性,是否能够“逆转进化的时针”,人为实现工业微藻的“返祖”,从而恢复其对高浓度CO 2 的适应性呢?实验证明,在5% CO 2 下,靶向敲低CA2基因的工程微拟球藻株,其生物质产量能提高超过30%,而且含油量不受影响。这一优良性状在多种类型的光培养设施和多种空间尺度的培养规模下均能展现,而且具有相当的遗传稳定性。进一步研究发现,CA2的敲低,显著改善了胞内pH值微环境,从而缓解了胞外高浓度氢离子对于细胞的毒害作用,最终维持了生物量的增长(图1)。有趣的是,工程藻株的生长优势只在烟道气培养条件下展现,若在空气浓度CO 2 下,工程藻株则丧失了生长优势。因此,本研究不仅证明工业微藻CO 2 含量适应性可以理性调控,而且发明了一种原创的工程藻株生态控制策略。    如何提高粮食和能源作物的CO 2 利用效率,一直是业界孜孜以求的目标。现有的工作通常以CCM活性的促进和提高为核心思路,以提高作物的固碳效率。本研究“反其道而行之”,首次提出,通过逆转CCM的进化脚步,抑制其活性,能够提高作物在高CO 2 条件下的产量。 这一新思路不仅对于工业烟道气直接转化生物柴油具有应用价值,对于人类生存空间的改造与拓展也有启发。例如,作为除金星外距离地球最近的行星,火星是最有希望实现载人登陆的地外行星,乃人类未来移民的首选目的地。但是火星大气中95%是CO 2 ,因此火星大气层成分的改造是人类大规模殖民火星的前提。本研究展示的高CO 2 耐受性的工业微拟球藻,不仅能够将CO 2 转化为氧气,而且能够按需生产生物柴油和食用油脂,因此也许可肩负改造火星大气层的重任,成为第一代的火星移民。    这项工作由青岛能源所单细胞研究中心徐健研究员与德国鲁尔大学Ansgar Poetsch教授合作主持,同时得到了中国科学院水生所的胡强研究员和胡晗华研究员等的帮助。该研究获得了中国科学院CO 2 重点部署项目、研究所“一三五”项目和国家自然科学基金的支持。
  • 《广州地化所揭示轨道力时间尺度上日照量与二氧化碳浓度对于副极区海冰变化的机制》

    • 来源专题:中国科学院文献情报系统—海洋科技情报网
    • 编译者:liguiju
    • 发布时间:2018-05-08
    • 在频繁被报导的全球环境变迁新闻中,北极区的海冰急速消融是最获得大众关注的其中一件,人类对于海冰全面性的研究直到上个世纪50年代人造卫星升空之后才开始,对于海冰的变化与其他环境因子的反馈机制仍有许多不明朗的部分,古气候与古海洋研究是增进人类对于海冰与其他气候系统反馈机制的重要手段。   近期,中国科学院广州地球化学研究所稳定同位素地球化学学科组罗立副研究员及其合作者利用深海岩芯材料以及了西北副极区太平洋鄂霍次克海中部过去13万年来的海冰变化历史,揭示了太阳日照量以及二氧化碳浓度对于海冰的影响。透过沉积物高解析度X光荧光扫瞄重建可信的年代模式,结合有机地球化学指标(IP25重建海冰变化, TEX86重建夏季海水表面温度),以及电脑数值模型验证气候反馈机制,研究团队首次发现了在过去13万年来,中部鄂霍次克海的海冰变化具有强烈的2万3千年的岁差周期,显示日照量对于此区的海冰有明显的影响,夏季海水表面温度则呈现典型10万年的冰期-间冰期周期,暗示海水表面温度在此地区可能不是主导的因素。而当大气中的二氧化碳浓度高过260 ppm的阀值(threshold value)时,即便日照量极小,海冰仍会减少,显示因着温室气体造成的大气暖化对此地海冰有一定的影响,如此周期性(日照量)与阀值(二氧化碳)的双重机制为学界首次发现与提出。   相关成果发表在Earth and Planetary Science Letters期刊上,该项研究获得了国家自然科学基金委与广州地化所项目资助。   论文链接:https://www.sciencedirect.com/science/article/pii/S0012821X1830061X