《生物质基碳量子点及其农业应用研究》

  • 来源专题:耕地与绿色发展
  • 编译者: 张毅
  • 发布时间:2024-10-11
  • 2024年5月,华中农业大学、中国农业科学院农业基因组研究所开展了关于生物质基碳量子点及其农业应用的研究,综述了从1970年至2023年生物质基CQDs的合成方法及其在农业中的应用。生物质基CQDs通过绿色合成策略制备,将废物转化为高价值的CQDs,减少资源浪费,促进可持续发展。综述强调了生物质基CQDs在合成方法、材料特性及生物学研究领域的优势,并探讨了其在植物生长促进、传感器、提高植物胁迫耐受性和生物成像等方面的应用。相关成果以Biomass-based carbon quantum dots and their agricultural applications发表在《Plant Stress》上。
  • 原文来源:https://www.sciencedirect.com/science/article/pii/S2667064X24000654
相关报告
  • 《合成生物学技术驱动上海农业创新场景》

    • 来源专题:耕地与绿色发展
    • 编译者:张毅
    • 发布时间:2024-10-16
    • 今年9月初,在科技部和上海市人民政府共同主办的2024浦江创新论坛上,一项关于“RNA生物农药绿色制造”的参赛项目斩获全国颠覆性技术创新大赛最高奖“卓越奖”,奖项颁发给了硅羿科技(上海)有限公司创始人、上海交通大学农业与生物学院首席研究员唐雪明教授。奖项的授予,也让与会者的目光聚焦在对RNA生物农药的关注上。 要理解RNA生物农药对国家农业生产和粮食安全意味着什么,要先认识我国农业绿色发展的未来走向。新一轮的科技革命和产业革命加速演进,被誉为第三次生物技术革命的合成生物学迎来全球化高速发展期。当前,国家对合成生物学研究支持力度大增,在2022年5月由国家发改委印发的《“十四五”生物经济发展规划》中,多次提及合成生物学在农业、医药、食品等领域的应用。尤其在农业领域,关于节能减排、病害防控、提升生长效率等绿色话题成为重点。今年6月,上海市政府办公厅发布的《关于加快推进本市农业科技创新的实施意见》中,也将合成生物学技术应用作为布局农业科技新赛道的重点方向之一,对挖掘生物制造潜力、推动农业绿色发展给予了很高的期待。 合成生物学之于农业科技创新的推动,表现在生物育种、生物制造、食品营养与健康等诸多领域。近两年,在市农业农村委的支持下,不少科技创新项目正瞄准相关学科的技术创新和成果转化,积极为新赛道布局投石铺路,而像硅羿科技这样一些有竞争力的上海本土企业及科研团队犹如黑马,为上海农业新质生产力增添新动能。 加快生物绿色农业布局。 “RNA生物农药在环境(土壤或水流)当中,基本在3-4天内就能降解。在可检测范围内,硅羿科技进行了多方面检测验证,结果表明,RNA生物农药的安全性能好,降解之后的残留很少,但速效性快,持药性长,它通过叶片进入到植物体内,在植物叶片甚至根茎中能够保留到20-30天,被国际同行喻为‘植物疫苗’。”唐雪明说。 普遍来看,传统化学农药研发周期长,费用高,同时使用过程产生的环境污染,农作物易产生抗性等问题难以解决,对农业绿色可持续发展带来负面影响。唐雪明说,RNA生物农药的“颠覆性”在于,以RNA干扰的方式,靶向干扰宿主(昆虫或病菌)关键因子mRNA,实现对病虫害的精准灭杀。 具体说来,就是通过细胞工厂或无细胞合成的方法,制备出具有特异性靶向宿主(昆虫或病菌)的dsRNA,直接作用于mRNA,作用时,大片段dsRNA会被多次切割,其中一个与靶标基因结合一次就会激发靶基因沉默;在自然环境中,dsRNA可实现快速降解,降解的产物还能作为植物生长的促进剂,被作物再次吸收,不仅环境友好还能促进增产。 新技术的优势还在于,其研发周期仅3-6个月。目前,团队正从无到有地创制以纳米技术搭载RNA农药,以进一步提升农药的吸附能力,降低研发成本;同时,形成了基于AI智能算法靶点筛选技术平台和dsRNA生物规模化合成,进行制剂研发的全链路生产工艺。 我国“十四五”全国农药产业发展规划中,首次将RNA生物农药列入优先发展规划。而国际上,像孟山都、拜耳、先正达等农化龙头企业,也更早落子布局,瞄准了对RNA生物农药关键核心技术的攻克。 2017年,唐雪明创立硅羿科技时,看准了RNA干扰技术应用于农业绿色防控领域的巨大潜力空间。这是他在耶鲁大学从事博士后研究,到10年后在牛津大学担任客座教授时,持续关注并感到得心应手的技术领域。事实印证了他的判断,硅羿科技成为中国首家RNA生物农药高新技术企业。 不过,从国际国内相关领域发展来看,仍然普遍缺乏产品研发标准,新材料获批和监管难度也很大。硅羿科技领跑于新赛道,主持制定了全球首个RNA生物农药的产业化标准,获得国内最早颁发的4张RNA农药“核酸干扰素”命名函,目前,已获得8张;也创制了全球第一个RNA杀菌剂和国内第一个RNA杀虫剂。 在上海,除了像硅羿科技这样的“黑马”,同样瞄准以合成生物学来推动绿色农业技术革新的农业创新企业还有不少。位于崇明陈家镇的长三角农业硅谷科创企业孵化园,正加快对农业新兴产业和未来产业的布局。比如,康码高产(上海)生物有限公司基于全球领先的D2P蛋白制造技术,研发为农作物提供替代化肥的蛋白营养液生物肥料,已建成目前全球最大的体外合成蛋白质工厂;上海植科优谷生物技术有限公司也正进行RNA农药开发等。 寻找更多农业应用突破点。 在上海市农业科学院生物技术研究所-农业合成生物学研究中心,有我国最早成立的从事农业合成生物学研究团队。近来,在市农业农村委科技创新项目支持下,团队创始人姚泉洪研究员正带领团队着手一项新课题,以水稻种子反应器为平台创制富含麦角硫因的稻米。 麦角硫因是一种天然氨基酸,能够清除自由基、有抗氧化、抗衰老、抗辐射等多种生理功能。该课题相关负责人彭日荷介绍,水稻种子合成麦角硫因,不存在人类病原或微生物毒素等安全顾虑,且在稻种中的生物活性物质比较稳定,有望让麦角硫因生产变得简单、经济,同时提升稻米附加值。 事实上,这样的科研创新并非只是在植物中合成营养成分的简单逻辑。在研究团队眼中,水稻被喻为“植物细胞工厂”,他们通过寻找或改造植物底盘,找到合适的“植物细胞工厂”,从而借助其丰富的酶库、各种细胞区室及其高度发达的细胞内膜系统,实现复杂的生物合成。 在国内,青蒿素和紫杉醇的商业化生产就成为典型案例,证明了合适的植物底盘作为“植物细胞工厂”在植物活性天然产物生产中的重要作用。而在上海,姚泉洪团队通过合成生物学技术,以水稻种子为底盘,创制出了富含β-胡萝卜素的金水稻、甜菜红素水稻、高含量虾青素稻米、核黄素稻米、叶酸水稻和Vc稻米等;以毕赤酵母为底盘创制出了高比活耐高温饲用植酸酶、木聚糖酶、β-葡聚糖酶等重要饲料酶工程菌种;以大肠杆菌为底盘研制获得一步法生产Vc、VB2、天然抗癌物质terrequinone A、抗衰老物质NMN、助眠物质褪黑素以及完全降解各种有机污染物工程菌种。 这些看似繁复的成果的取得,对高附加值农作物生产和健康生活品质改善有重要影响。目前,该团队正在促进相关科技成果转化,这也是商业化生产所看中的重要价值。 近两年,合成生物学技术推动农业科研创新,其显示度不断提升。新形势下,合成生物学农业交叉学科建设正积极推进,更大程度鼓励高校、科研院所和企业开展产学研协同创新,并通过跨学科、跨领域的专家引进,引育一批生物育种、生物制造等顶尖科学家及创新团队。 今年以来,浦东的张江种谷、崇明的长三角农业硅谷和奉贤的上海农业科创谷等产业园区的落地和错位发展持续收获关注热度,一批生物育种、生物制造的农业企业和科研团队作为“隐形冠军”引驻,其创新项目也引来期待,这些为推动未来农业的绿色转型升级,形成新兴农业产业链打下潜在基础。
  • 《《2025中国农业农村低碳发展报告》发布——我国生态低碳农业呈稳中有进发展格局》

    • 来源专题:耕地与绿色发展
    • 编译者:张毅
    • 发布时间:2025-06-04
    • 5月17日,中国农业农村低碳发展报告发布会暨第十八届农业环境学术研讨会在北京举行,发布了《2025中国农业农村低碳发展报告》(以下简称报告)。报告显示,我国农业农村减排固碳工作有序推进,生态低碳农业稳步提升,减排固碳科技创新快速发展,农产品碳足迹核算体系不断完善,低碳农业新模式不断涌现,农业农村低碳发展取得明显成效。 农业农村减排固碳成效显著 中国农业科学院农业农村碳达峰碳中和研究中心主任、农业农村部农业农村生态环境综合实验室主任梅旭荣表示,报告基于稳产保供、资源利用、生态服务、低碳发展和经济发展5个维度、26项指标,构建了生态低碳农业发展评价指标体系,明确2016-2022年31个省(区、市)生态低碳农业发展基本态势,我国正处于从传统生产模式向可持续发展转型的关键攻坚阶段,区域间发展存在一定的结构性差异和不均衡性,东、中部地区发展较快,西部地区提升潜力较大。 报告指出,2022年我国发布《农业农村减排固碳实施方案》以来,先后发布和实施了数十项政策、措施,我国农业农村绿色低碳转型和高质量发展取得了显著成效。 在畜牧业领域,截至2023年,全国畜禽养殖规模化率达73.2%,种养结合农牧循环发展新格局初步形成,全国畜禽粪污综合利用率达79.4%。 在渔业减排中,我国鼓励建造新材料新能源渔船,研制节能环保装备,研发了适用于养殖期间调控底质的池塘底质改良机;结合紫菜养殖模式,相关科研单位联合研发了节能环保型紫菜采收作业工船等。 在农田和草地固碳扩容方面,我国建立了国家、省、市、县四级秸秆资源数据平台,2022年,全国主要农作物的秸秆产生量为8.65亿吨,可收集量7.31亿吨,综合利用率达88.1%,肥料化利用率为57.6%。通过推广测土配方施肥和有机肥替代化肥等措施,2023年全国农用化肥施用量5021.7万吨,且连续8年保持下降趋势。此外,自2020年实施推广应用保护性耕作技术3年以来,东北四省(区)已累计在223个项目实施县实施保护性耕作2.01亿亩次,2022年实施面积达到8300万亩。 在农机节能减排方面,报废更新推动产业转型升级,加速淘汰高耗能及落后农机,促进新型、高端、智能、绿色农机推广应用,提升了农机装备作业质量、作业效率、可靠性和适用性,有效减少了化石能源消耗。 在可再生能源替代方面,积极推进农村沼气转型升级,截至2023年底,以畜禽粪污、秸秆等农业废弃物为原料的各类中小型沼气工程、大型和超大型沼气工程分别为6.22 万处和5518 处。大力推进秸秆打捆直燃集中供暖,辽宁、黑龙江、山西、河北等地开展了秸秆打捆直燃集中供暖试点示范。有序扩大秸秆成型燃料推广范围, 2023年全国固化成型燃料工程1919处,年产量1239.45万吨。大面积推广应用太阳能利用技术,至2023年底,全国累计推广太阳房37.38万处,安装太阳能热水器4101.9万台,推广太阳灶73.57万台。 科技创新助力农业低碳取得新进展 农业既是受气候变化影响较大的脆弱行业,也是温室气体排放的来源之一。在保证粮食安全的前提下,如何减少农业生产过程中温室气体排放、增加土壤固碳能力,已成为全球可持续发展的关键议题。 在农业减排方面,报告指出,2015年是我国作物温室气体排放强度的转折点,2015-2020年作物生产温室气体排放强度水平下降了16%。节水灌溉技术不仅能显著减少温室气体排放,还可提高作物生产力和水资源利用效率。与传统淹水灌溉相比,浅层灌溉和间歇灌溉可分别节水44%和67%,降低了37%全球净增温潜势和44%温室气体净排放强度。精准施肥技术可合理调整施肥量和时机,避免因过量施肥导致的氧化亚氮排放。相比普通氮肥处理,秸秆还田配施缓控施肥处理显著提高小麦和玉米产量14.6%和13.2%,减少年平均温室气体排放总量10.7%。轮作与间作种植技术可有效提高养分和光温水利用效率,降低氧化亚氮排放。 在农业固碳方面,通过保护性耕作、免耕、降低土壤密度、深松、局部施肥等措施,改变根系形态和结构、根际沉积物质量和数量、根系碳的分解和稳定、微生物生物量和活动,从而增加碳固存,影响土壤碳固存。 “当前,新的科技成果不断运用到农业生产中,不断助力农业农村绿色低碳发展。”梅旭荣介绍,“如基于监测与自动控制的智慧农业技术,可实现生产管理与化肥农药投入以及动植物生长过程、需求精准匹配,有效应对气候变化导致的水、光照、热量等气候资源变化。” 多种农产品碳足迹稳步下降 报告还发布了油菜、柑橘、鸡蛋等农产品的碳足迹。梅旭荣介绍,按照《2019年IPCC国家温室气体清单指南》的核算方法和全生命周期碳足迹核算框架,采用从“摇篮到大门”的系统边界,也就是从生产资料准备到农业生产过程,去核算种植农产品油菜和柑橘,以及养殖农产品鸡蛋的碳足迹。 2015年至2022年,我国油菜生产中,每千克油菜碳足迹均值为0.84千克二氧化碳当量,也就是说,从“摇篮到大门”,每千克油菜生产中,会产生相当于0.84千克二氧化碳的温室气体排放,这一数据,接近全球平均水平,并且这一数据呈波动下降趋势。 2015年至2022年,我国柑橘生产中,每千克柑橘碳足迹为0.17千克二氧化碳当量,梅旭荣表示,“这一数据低于全球其他国家,甚至可以说是全球最低的。” 报告还核算了2024年不同生产模式下,鸡蛋的碳足迹。梅旭荣介绍,大型养殖场的碳足迹比较低,每千克鸡蛋的碳足迹为1.02千克二氧化碳当量,而中型养殖场则为1.25千克二氧化碳当量。不同规模养殖场鸡蛋碳足迹存在明显差异,中型养殖场的鸡蛋碳足迹高于大型养殖场。饲料种植加工环节碳足迹贡献最大,其次为饲料运输环节、粪便管理环节和养殖场能源环节。但总体来说,我国鸡蛋的碳足迹,低于全球大部分国家。 “未来我们还将继续进行更多的检测和核算,精准识别出减排潜力的关键环节和区域,这有利于促进绿色消费和低碳生产的良性互动,更好地践行大食物观。”梅旭荣说。 报告还对未来“十五五”时期的农业农村低碳发展,提出了战略方向建议。报告建议,进一步完善碳排放统计核算体系,将农业温室气体排放纳入全口径核算范围;建立能耗双控向碳排放双控全面转型新机制,推动以碳强度控制为目标的低碳发展模式;加强生物、信息、材料科学与农业减排固碳科技深度融合,创新驱动农业农村低碳发展;探索人-地-粮-生态协同发展路径,创建农业农村低碳发展的中国标准和中国方案。