《华中科技大学王成亮团队在高性能储能新材料取得重要进展》

  • 来源专题:中国科学院文献情报制造与材料知识资源中心—领域情报网
  • 编译者: 冯瑞华
  • 发布时间:2021-11-24
  • 为实现“碳中和”和“碳达峰”的双碳战略,储能器件的需求日益增加,传统锂电池已不足以满足多样化和大规模的储能需求。面向各种新型电池,有机高分子功能材料具有得天独厚的优势。但传统的有机高分子材料的导电性通常较差,不利于获得高性能储能器件。

    而共轭配位聚合物材料因具有良好的导电性使其在诸多领域(半导体、超导体、存储、气体吸附、传感等)中具有潜在的应用前景,近几年得到了大量关注。但该类材料的结构和化学态还存在着各种争议,其材料的复杂性造成到目前为止,大部分的研究仍集中于单类原子的配位上。

    王成亮团队深入研究了该类材料的结构,揭示了该类材料的理想结构及化学态,获得了高性能储能新材料。在此基础上,进一步研究了两种不同原子共配位的共轭配位聚合物材料,获得了1+1>2的效果。

    通过将S和N用于共配位,实现了导电性、稳定性的协同提升,获得了高容量、高稳定性和良好的快充性能。

    据了解,王成亮教授是华中科技大学光电学院、武汉光电国家研究中心博导,国家海外高层次人才,华中卓越学者。2005年本科毕业于南京大学,2010年博士毕业于中国科学院化学研究所。随后依次在香港中文大学、德国明斯特大学和伊尔梅瑙理工大学从事研究工作。2016年通过国家海外高层次人才引进,加入华中科技大学。一直从事于有机高分子材料及其在有机电子学和有机储能电池中的应用研究。发表SCI论文70余篇,单篇最高被引超过2400次。

    王成亮教授负责的有机电子实验室课题组,主要专注于共轭有机高分子材料的研究,利用材料本身的特点应用于光电器件和储能器件,其目标是实现柔性电子设备,并为新能源的利用和存储提供新的解决方案。

相关报告
  • 《华中科技大学朱锦涛团队在室温长余辉发光材料及指纹成像方面取得进展》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2019-04-01
    • 有机长余辉材料是近几年发展的一类发光材料。然而,绝大多数有机分子仅仅在聚集态(如晶体)或者需要掺杂在特殊的主体中才能发挥出室温长余辉发光,主要原因是分子在聚集态中可以实现分子间的电子耦合,进而通过系间穿越(ISC)敏化三重激发态。 为了实现有机分子在无定型状态下的长余辉发光,华中科技大学化学与化工学院朱锦涛教授团队与武汉国家光电研究中心朱泽策博士合作构建了一种存在分子内电子耦合作用的有机小分子(CzDPS)(见图1)。分子中的咔唑(给体)和二苯砜(受体)单元在空间上靠近,这种给受体在空间上的近距离作用可有效地介导系间穿越,并实现非聚集态的长余辉发光。研究结果表明,CzDPS不仅在晶态中具有室温磷光现象,而且在掺杂浓度仅为1wt %的光固化胶中仍然具有长余辉发光,表明该类材料在塑料和光固化3D打印等领域中有很好的潜在应用。 图1、CzDPS在晶体中的构象及室温发光现象 在此基础上,该团队还探讨了该有机长余辉材料在时间分辨成像中的应用。传统有机材料的发光寿命一般在纳秒到毫秒量级,往往需要复杂而精密的成像设备才能将材料的发光与背景散射光区分开来。而长余辉材料的发光寿命可达秒级,通过一般的CMOS相机即可检测到毫秒延迟的长寿命发光。利用CzDPS的长余辉发光性质,该团队仅通过在紫外LED灯下照射附着在指纹上的样品,关掉紫外LED灯后使用手机拍照,即可实现指纹的时间分辨发光成像,有效消除了散射光和基底的自荧光对指纹识别的干扰(见图2),为指纹识别鉴定提供了一种新的、简便方法。 研究结果发表于《Materials Horizons》杂志上,田迪博士为文章第一作者。
  • 《上海大学在热电材料性能调控方面取得重要进展》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2018-09-04
    • 热电材料的载流子浓度是其电-热转换效率的决定性因素之一。然而,热电材料的最佳载流子浓度并不是一个定值,而是随温度而变化。因此,传统的掺杂方式并不能实现热电材料在全工作温区内的载流子浓度优化。近年来的研究表明,含有“动态原子”的化合物往往表现出奇异的电热输运性能,比如具有类液态Cu子晶格的Cu2Se化合物,以及具有金属-绝缘体转变的VO2化合物等。热电(温差电)性能由电、热输运性能共同决定,因此是研究“动态原子”作用的理想体系。并且在理解“动态原子”作用机理的前提下,有望利用其对热电性能进行宽温域优化。 动态原子行为示意图:(a)低温下体系由PbSe基体及富Cu第二相构成; (b)随温度升高Cu原子逐渐进入晶格间隙形成动态n型掺杂; (c)高温下晶格间隙中的Cu剧烈振动,极大地降低了材料的热导率。 最近上海大学骆军教授课题小组利用“动态原子”对热电化合物的电热输运性能进行了调控。他们首先设计并构建一个包含基体(PbSe)和第二相的相分离体系,并利用温度升高过程中第二相的逐渐溶解在基体中引入了间隙原子,从而实现了在全温区范围内对载流子浓度的优化(见上图)。在该材料体系中,间隙Cu离子表现出“动态”特征,并且可以提供1个电子,实现对基体的n型掺杂。首先,在低温下,富Cu第二相可视作原位掺杂源,随着温度升高,Cu在PbSe中的固溶度逐渐增大,Cu离子不断从富Cu第二相动态进入到PbSe的晶格间隙,从而载流子浓度随温度升高而渐进式增加,实现了宽温区的载流子浓度优化,因此功率因子显著增大。其次,Cu的添加在材料中引入晶格缺陷,同时位于晶格间隙的Cu在高温下剧烈振动导致低频光学支声子的出现,从而实现了多尺度声子散射,因此晶格热导率显著降低。间隙Cu原子的动态掺杂效应和多尺度声子散射的协同效应,使得Cu掺杂n型PbSe的热电性能大幅度提高,最终得到了高达1.45的热电优值。 该研究不仅深入揭示了动态掺杂对材料电热输运性能调控的微观机理,同时还证明了“动态原子”可作为优化热电材料性能的有效手段。该工作由上海大学骆军教授、张继业副研究员、杨炯教授和南方科技大学张文清教授等共同完成,上海大学为第一单位,材料学院博士生游理为第一作者,相关研究结果发表在Energy & Environmental Science 2018, 11, 1848-1858(影响因子30.067)。该工作得到国家自然科学基金重点项目、面上项目和上海市科委研发平台专项等课题的资助。