《引入纳米孔洞!我国科学家实现新成果》

  • 来源专题:能源情报网监测服务平台
  • 编译者: 郭楷模
  • 发布时间:2024-08-13
  • 经过长期攻关,中国科学院金属研究所研究团队通过将直径百纳米以下的孔洞弥散分布在材料中,实现了在不损失甚至提高塑性的同时,降低材料密度,大幅提升材料强度,这一成果今天(8月9日)在国际学术期刊《科学》在线发表。

    据介绍,发展新型轻质高强度材料是航空航天、汽车、消费电子等关键领域的共同迫切需求。

    目前,金属材料轻量化一般是通过在金属中添加更轻的铝、锂等元素来实现。中国科学院金属研究所团队研究发现,与常规方式相比,引入纳米孔洞是更为直观有效,且更洁净的材料减重途径。不过,一般情况下,少量孔洞的存在就会导致材料的强度、塑韧性等力学性能急剧降低。经过长期攻关,科研团队成功突破了这一难点,通过在材料中添加直径为百纳米左右甚至更小的弥散纳米孔,实现了不损失甚至提高塑性的同时,降低材料密度并大幅提升其强度。

    实验数据显示,引入纳米孔后的新材料,屈服强度提升了50%—100%,意味着具有更高的承载能力。这种新型强化方式不仅有助于材料轻量化和回收再利用,还能更大限度保留本体材料导热导电等优异的物理性能,未来有望在航空航天等多个领域获得应用。

  • 原文来源:https://www.cnenergynews.cn/kejizhuangbei/2024/08/09/detail_20240809171605.html
相关报告
  • 《引入纳米孔洞!我国科学家实现新成果》

    • 来源专题:关键矿产
    • 编译者:欧冬智
    • 发布时间:2024-08-09
    • 中国科学院金属研究所的研究团队通过在材料中引入直径百纳米以下的纳米孔洞,成功实现了在不损失或提升塑性的情况下降低材料密度并显著提高强度。这一创新材料的屈服强度提升了50%至100%,满足了航空航天、汽车和消费电子等领域对轻质高强度材料的迫切需求。与传统方法相比,纳米孔洞的引入提供了一种更有效且清洁的减重途径,同时保留了优异的导热导电性能,未来有望在多个关键领域得到应用。
  • 《我国科学家提出钙钛矿电池新结构方案》

    • 来源专题:能源情报网信息监测服务平台
    • 编译者:guokm
    • 发布时间:2023-02-23
    • 2月18日,从中国科学技术大学获悉,该校徐集贤教授团队与合作者,针对钙钛矿太阳能电池中长期普遍存在的“钝化—传输”矛盾问题,提出了一种命名为PIC(多孔绝缘接触)的新型结构和突破方案,实现了p-i-n反式结构器件稳态认证效率的世界纪录,并在多种基底和钙钛矿组分中展现了普遍的适用性。相关研究成果17日发表在《科学》杂志上。 在钙钛矿太阳能电池中,异质结接触问题带来的非辐射复合损失已被证明是主要的性能限制因素。由于“钝化—传输”矛盾问题的存在,超薄钝化层纳米级别的厚度变化都会引起填充因子和电流密度的降低。 研究团队提炼出的PIC接触结构方案,不依赖传统纳米级钝化层和遂穿传输,而直接使用百纳米级厚度的多孔绝缘层,迫使载流子通过局部开孔区域进行传输,同时降低接触面积。 团队通过PIC生长方式从常规“层+岛”模式向“岛状”模式的转变,成功利用低温低成本的溶液法实现了这种纳米结构的制备,并首次实现了空穴界面复合速度从60厘米/秒下降至10厘米/秒,以及25.5%的单结最高效率。这种性能的大幅改善在多种带隙和组分的钙钛矿中都普遍存在,展现了PIC广泛的应用前景。PIC结构在多种疏水性基底都实现了钙钛矿成膜覆盖率和结晶质量的提高,对于大面积扩大化制备也很有意义。 《科学》杂志审稿人评价:“PIC结构得到了很好的展示,并首次在空穴传输界面实现……这种方法将会对未来的局部钝化技术研究产生重要影响。”