《韩国计划到2030年开发50种AI芯片》

  • 来源专题:集成电路
  • 编译者: shenxiang
  • 发布时间:2020-10-14
  • 据韩联社报道,韩国信息通信技术部表示,韩国计划在2030年之前开发多达50种以人工智能为重点的系统芯片,因为该国力争在其半导体制造和内存芯片的传统立足点以外领域拓展领先地位。

    AI芯片是指专门用于AI服务的高性能和高能效半导体。

    今年初,韩国将大笔赌注押在开发下一代芯片上,计划到2029年花费约1万亿韩元(8.71亿美元)。

    该国信息产业部表示,计划在2022年前获得自主研发的技术来开发此类芯片,同时在未来10年内培养3000名该领域的专家。

    据悉,中国计划到2030年占领全球AI芯片市场20%的份额。

    该部表示,计划利用去年成立的当地半导体基金的700亿韩元来帮助AI芯片公司进行研发以及并购。

    该国培育AI芯片行业的举动是在寻求半导体行业的新增长引擎之际。

    韩国信息社会发展研究所称,人工智能芯片市场预计将快速增长,到2030年将达到1179亿美元,而今年的这一数字为185亿美元。

    自动驾驶汽车等新的AI服务有望推动该领域的发展。

    韩国对全球DRAM芯片市场保持着牢牢的控制。三星电子和SK海力士公司是两家主要的芯片制造商,它们在今年第二季度合计占据了该市场的73.6%。

    但据市场追踪机构Gartner预测,到2024年,市场每年将下降0.5%。

    三星在7月表示,将在今年年底之前雇用1000名新的芯片设计和人工智能专家,其中包括招募创纪录数量的研究生,以确保半导体和人工智能领域的未来技术。

    三星已经在今年上半年向芯片设计和AI领域的500名博士研究人员提供了工作。

    这家全球最大的内存芯片和智能手机制造商表示,其大规模的招聘计划旨在克服因COVID-19大流行和IT领域的激烈竞争而引发的全球不确定性。

    此举符合三星2018年的投资计划,当时三星宣布将在未来三年内花费180万亿韩元(1495亿美元)来推广其新的增长引擎,例如AI,5G和高级芯片。

    去年,三星通过投资133万亿韩元并增强其在系统LSI和代工业务中的竞争力,提出了到2030年成为世界第一逻辑芯片制造商的愿景。

    今年五月,三星电子副董事长李在永(Lee Jae-yong)是韩国顶尖企业集团三星集团的事实上的负责人,誓言招募人才能够使三星变得更好。

相关报告
  • 《AI芯片巨头争霸时代,华为AI芯片下周将首次亮相》

    • 来源专题:集成电路
    • 编译者:tengfei
    • 发布时间:2017-11-20
    • 近日,华为高级副总裁余承东在微博上发布了一段视频,为自家的人工智能AI芯片造势。他表示,“速度之追求,从不止于想象”,并预告了AI芯片将在9月2日IFA2017上亮相。 在上月的华为年中业绩媒体沟通会上,余承东透露,将于今年秋季发布AI芯片,华为也将是第一家在智能手机中引入人工智能处理器的厂商。此外,在2017年中国互联网大会上,余承东还曾表示,由华为海思制造的芯片将会集CPU、GPU和AI功能于一体,并且有可能基于ARM今年在Computex展会上推出的全新AI芯片设计。 根据今日余承东视频透露,华为的AI处理器有望显著提升麒麟970的数据处理速度。如果AI芯片能用在10月份发布的华为Mate 10手机上,则华为Mate 10的数据处理能力将十分令人期待。 与华为一样,当下英特尔、联想、英伟达、谷歌、微软等全球科技巨头纷纷在积极拥抱AI,对AI芯片的布局成为重中之重。 英特尔 对于AI芯片的重要性,英特尔中国研究院院长宋继强本月接受媒体新智元采访时指出,我们需要用技术去处理大量数据,使其对客户产生价值,在这个过程中无疑芯片是极其重要的: 到2020年,保守估计,全世界会有500亿设备互联。未来的数据来源于各种设备终端。不再靠我们人打电话、玩手机、发邮件这些数据。无人车、智能家居,摄像头等都在产生数据。 以后每一台无人驾驶汽车都是一台服务器,每台车每天会超过4000个GB的数据,这些数据都不可能通过5G来传输,所以一定很多数据是在本地处理和分析然后选择性的往上走,本地你会使用很多技术,超越现代服务器的技术。 作为传统的芯片龙头制造商,英特尔今年7月推出了新一代Xeon服务器芯片,性能大幅提升,深度学习能力是上一代服务器的2.2倍,可接受培训和推理任务。此外,英特尔还展示了将在未来AI领域发挥重大作用的现场可编程门阵列(FPGA)技术,同时,计划推出Lake Crest处理器,旨在深度学习代码。 联想 联想集团总裁杨元庆表示,“AI通用处理器芯片是人工智能时代的战略制高点“,联想集团高级副总裁、联想创投集团总裁贺志强也指出: 智能互联网时代,AI芯片是人工智能的引擎,对于智能互联网的发展将起到决定性作用。 就在上周,联想创投与阿里巴巴创投等顶尖投资方一起,联合投资了有“全球AI芯片界首个独角兽”之称的寒武纪科技。 英伟达 英伟达在过去几年中将其业务重心转移到AI和深度学习领域,今年5月,英伟达发布了一款针对人工智能应用的重量级处理器:Tesla V100。 该芯片拥有210亿个晶体管,性能比英伟达一年前发布的带150亿个晶体管的Pascal处理器强大得多。虽然只有Apple Watch智能手表的表面那么大,但它拥有5120个CUDA(统计计算设备架构)处理核心,双精度浮点运算性能达每秒7.5万亿次。英伟达CEO黄仁勋表示,英伟达花了30亿美元打造这款芯片,售价将会是14.9万美元。 谷歌 宣布战略转向“AI first”的谷歌,在去年就发布了专门为机器学习定制的TPU(张量处理单元),与CPU、GPU相比,TPU效率提高了15-30倍,能耗降低了30-80倍。 今年5月的谷歌开发者大会上,谷歌发布了新款产品——Cloud TPU,它拥有四个处理芯片,每秒可完成180 tflops计算任务。将64个Cloud TPU相互连接可组成谷歌称之为Pod的超级计算机,Pod将拥有11.5 petaflops的计算能力(1 petaflops为每秒进行1015次浮点运算)——这对AI领域的研究来说将是非常重要的基础性工具。 目前,TPU已经部署到了几乎所有谷歌的产品中,包括Google搜索、Google Assistant,甚至在AlphaGo与李世石的围棋大战中,TPU也起到了关键作用。 微软 上月,媒体报道称,微软将为下一代HoloLens加入一款自主设计的AI协处理器,可以在本地分析用户在设备上看到和听到的内容,再也不需要浪费时间把数据传到云端进行处理。这款AI芯片目前正在开发,未来将被包含在下一代HoloLens的全息处理单元(HPU)当中。微软表示,这款AI协处理器将会是微软为移动设备设计的首款芯片。 近几年来,微软一直在致力于开发自己的AI芯片:曾为Xbox Kinect游戏系统开发了一套动作追踪处理器;为了在云服务方面与Google、亚马逊竞争,微软专门定制了一套现场可编程门阵列(FPGA)。此外,微软还从英特尔的子公司Altera处购置可编程芯片,写入定制化的软件来适应需求。 去年,微软曾在一次大会上使用数千个AI芯片,把所有英文维基百科翻译成西班牙语,大概有500万篇文章,而翻译时间不到0.1秒。接下来,微软希望能让使用微软云的客户通过AI芯片来完成任务,比如从海量数据中识别图像,或者通过机器学习算法来预测消费者的购买模型。
  • 《AMD前芯片研发总监创业两年多 研发了一款超越Intel/NVIDIA的AI视觉芯片》

    • 来源专题:集成电路制造与应用
    • 编译者:shenxiang
    • 发布时间:2018-10-24
    • 新一轮的AI热潮让一批创业者努力为自己贴上AI标签以便搭上这一波热潮的红利,当然也有一批创业者在AI热潮到来之前就早有准备。AI芯片就是许多早有准备的创业者看好的创业方向,他们想要为AI语音或视觉提供更好的芯片,从目前的情况看,AI视觉芯片领域的竞争相对激烈。值得注意的是,由AMD前芯片研发总监带领的团队用时两年多研发了一款声称超越Intel Movidius MyriadX和Nvidia Tegra X2的AI视觉芯片,事实果真如此? 世界第一的AI视觉芯片来自初创公司 伴随AI的热潮,全球范围内无论是传统芯片巨头、科技企业还是初创公司都对AI芯片有非常高的热情。Intel在2016年收购了硅谷初创视觉处理公司Movidius增强了其在视觉芯片领域的实力,Nvidia也有图像性能强大的Tegra移动处理器。国内,地平线机器人、NextVPU、耐能、云天励飞、寒武纪科技等都是AI视觉芯片创业公司的代表。 越来越多公司的加入也让AI视觉处理器市场的竞争变得越来越激烈,NextVPU(肇观电子)CEO冯歆鹏表示:“AI视觉处理器是一个正在兴起的市场,无论是对巨头还是创业企业都非常重要。我们判断视觉处理器的市场规模未来一定会超过CPU市场。” 他同时表示:“目前的时间点比较有意思,市场的需求已经起来,但芯片处理AI视觉需求的时候速度慢且开发痛苦,价格也很昂贵。如今这个市场还是比较蓝海的情况,英特尔和英伟达这样的芯片巨头在往前走,但是他们的进展相对慢一些,因为新兴的市场规模还比较小,大公司往往是做大市场服务大客户,新兴市场难以撑起大公司的整个项目。从历史的经验看,这种科技变革的节点小公司更有优势。在AI视觉处理器领域,可以说目前我们微微领先。” 冯歆鹏口中微微领先的AI视觉芯片就是被称为世界第一的AI视觉处理器NextVPU N171,这个第一如何理解?冯歆鹏表示,在端侧,我们的AI视觉处理器的几何引擎每秒能计算2.48亿个3D点,这个结果把目前世界领先的的水平推进了一大步。另外,N171的CNN引擎跑深度神经网络例如ResNet的结果也比Nvidia Tegra X2高好几倍。每秒3D点云的性能也比Intel Movidius Myriad2、Nvidia Tegra X2高几倍,还支持其它AI视觉处理器不支持的像素级理解和语义分割。 这家推出被称为世界第一AI视觉处理器的公司是创立于2016年5月的NextVPU,不过NextVPU创立之初首先推出的是辅助盲人感知世界和出行的智能眼镜,原因从冯歆鹏创业的历程就能找到。冯歆鹏在创业前担任AMD的研发总监,与创业搭档周骥博士在大概2012年的时候就开始关注计算机视觉的方向,到了2016年他们觉得很多机会都已经出现,不能再继续等下去,最后两人就在2016年创立了NextVPU(Next Vision Processing Unit, 未来的视觉处理器),中文名为肇观(有开启视觉的含义),冯歆鹏担任CEO,周骥担任CTO。虽然从创业之初就准备做芯片,但他们觉得2016年整个行业还没起来,单一的环节做得好没什么用,因此不得不先做一个产品。当然,从他们创业的第一天开始就在为芯片做准备,也就后来N171里的核心自研IP。 为何能开发出超越芯片巨头的AI芯片? 从数据上看,NextVPU N171可以被称为世界第一的AI视觉芯片,不过更让人关注的是初创公司为何能打造出超越芯片巨头的终端AI视觉芯片?这需要从NextVPU N171芯片的定位到功能去理解,创业之前冯歆鹏就已经明确了要做一款AI视觉芯片,但AI芯片可以分为云端和终端芯片,不同的选择将面对不同的市场竞争。冯歆鹏表示,云端和终端都有很多机会,从英特尔的收入分布看终端和服务器芯片的收入比约为5:1,其中服务器芯片出货量少、单价高利润率也比较高,但是这一市场竞争非常激烈,几乎是巨头垄断,更适合较大的企业。终端芯片无论是市场总量还是芯片需求量都远大于服务器市场,并且终端市场更具多样性,用户的需求也有一定的差别,小公司进入和发展都比较有利。 选择了终端市场之后,接下来需要定义产品功能。冯歆鹏指出,计算机视觉面临几何和理解两大挑战,当然,无论是几何还是理解都有大量的需求,比如客户想通过3D环境扫描做一个模型构建地图,或者生产线上不同的零件区分,这就需要VSLAM、多目、结构光、TOF等技术,也需要CNN识别,检测和分割等技术。看到这些需求并且了解到如今的芯片不能满足需求之后,我们芯片的功能大概就确定了。 因此,NextVPU N171具备的一大特色就是集成了三个自主IP:几何引擎、深度神经网络引擎(CNN)、图像成像引擎(ISP)。几何引擎用于同时处理传感器获得的数据、坐标空间信息、时间等多输入的信息,也就是对三维点组成的点云做各种计算,这是所有VSLAM三维重建的基础,机器人、汽车、AR和VR领域等对此都有急迫的需求。据悉,N171几何引擎每秒能处理2.48亿个3D点,处于业界领先的水平。 深度神经网络引擎支持图像的检测识别、分割以及各种主流的CNN算法。模型从简单到复杂,逻辑从几层到几百层都支持。冯歆鹏强调,深度神经网络引擎我们花了很长时间去做,并且跑越复杂的模型我们的深度神经网络引擎的利用率越高,越流行的网络模型,利用率也越高,几乎可以达到理论极限。 视觉成像引擎则是对图像进行处理,为了能够让机器看懂世界,视觉成像引擎做了非常多特殊的处理的调教,动态范围可以做到150dB,这是基于机器视觉的需求所决定。 除了三大自主IP,N171还有一大特色就是可独立运行操作系统,这个功能是通过N171中的多核CPU来实现。对于这个功能,冯歆鹏表示许多用户习惯于用像Linux这样的操作系统做文件的存储和调取,然后做日志,而非使用特殊的轻量级内核。要实现这个功能,有两种方式,一种是分布式的做法,在常用应用处理器AP芯片的基础上增加一个AI协处理器,第二种方式是异构融合,也就是将两个芯片做集成。 “我们接触到的所有客户都倾向于第二种方式,所以我们集成了多核CPU能够运行操作系统,让我们的芯片既能满足传统需求,也有很好地AI性能。另外,集成度越高,芯片内部的数据传输及交换的成本也能越低。”冯歆鹏补充表示。 由此不难看出,发现市场的痛点和需求之后,根据客户的需求一步步明确产品的形态和功能打造满足市场需求的产品,通过自研的IP,以ASIC芯片的形式实现,N171最终获得比传统芯片巨头性能更强的芯片自然也就可以理解。不过,对市场需求的正确判断以及好的产品理念还不足以让一款芯片成功流片,背后的团队也非常关键。 冯歆鹏和周骥都来自AMD,我们知道AMD是提供CPU,也能提供GPU的高性能计算芯片公司,而AI需要的就是高性能芯片,因此从Intel、Nvidia、AMD这三家高性能计算芯片公司出来的团队在做AI芯片的时候在经验上更具优势。冯歆鹏参与过50多款CPU和GPU的设计,对于高性能计算芯片里的流水线设计、数据的分布式存储处理等都非常有经验。除了基于已有的经验积累用两年多的时间先做IP然后做SoC,N171在其他方面也有巨大的投入。 能否成功落地? 在设计、功能都能够满足市场需求之后,芯片的实际性能成为考验一款芯片能否成功落地的关键。对于N171这样的高性能芯片,无法回避的问题就是高性能带来的高功耗。冯歆鹏表示:“一款芯片的设计只要遵循规则不出错,性能和功耗的实际值和理论值基本会遵循一条曲线。我们产品的性能和功耗水平同样基于客户的需求,根据客户产品设计的电池容量以及他们期望的续航时间,可以推导出芯片功耗的具体水平,只要功耗不大到一定的程度客户都能够接受。当然N171的性能和功耗也可以调教,不同的时钟频率对应不同的功耗,也可以根据客户的需求进行配置。“ N171虽然是高性能芯片,但并没有采用最先进的7nm工艺,而是选择了28nm工艺,这主要是从市场的角度出发,使用成熟的28nm工艺的性能和功耗就能够满足这款芯片目标市场和客户的需求。 而在N171芯片的目标市场之中,汽车市场对于芯片的稳定性、实时性、安全性都有更高的要求。为了进入这一市场,冯歆鹏表示:“我们的芯片首先满足ISO TS16949、AEC-Q100两个车规标准,也正在做ISO26262标准。另外,汽车市场比消费市场和工业市场有一些差异化的需求,比如需要支持零下40度到零上125度的温度,还要求芯片在出现错误之后能够自己恢复和校准。因此我们用更好的封装材料保证其稳定性、测试的流程也更加复杂。基于之前设计波音飞机上使用的CPU的经验,我们对这些都很有经验,只是需要付出更多的时间和成本。” 至于火热的安防市场,他们A轮的领投方是中电海康基金,这个基金背后是中电科技集团和中电海康集团。中电海康集团下属的海康威视是国内安防领域的龙头,他们在积极布局智能摄像头,NextVPU N171里的很多设计和功能也是为安防考虑。 既然基于相同晶圆和裸片的N171能够满足汽车和工业市场的需求,那么消费级市场当然也是NextVPU不会错过的。据悉,N171的第一代芯片已经成功流片,测试的结果也非常好,现在正处于客户导入的阶段,距离正式的上市还有几个月时间。冯歆鹏透露目前的合作客户已经涵盖车载、安防和机器人,希望未来N171还能做第二代、第三代,持续做下去。 在AI的热潮下,许多有经验有实力敏锐的大咖都开始了创业,他们希望能够在新的浪潮里发挥更大的价值,很显然NextVPU的团队就属于这一的创业团队。在技术、产品都能够比肩芯片巨头的情况下,芯片的实际落地更考验创业团队,在这个过程中会遇到很多意想不到的事情。相信我们都愿意看到NextVPU的产品能够不断迭代,为计算机视觉领域带来更好的AI芯片,也能够增强中国芯片的实力。