《移动基因组增加弧菌基因组可塑性的机制获揭示》

  • 来源专题:中国科学院文献情报系统—海洋科技情报网
  • 编译者: liguiju
  • 发布时间:2022-06-29
  • 6月27日,中国科学院南海海洋研究所热带海洋生物资源与生态重点实验室研究员王晓雪团队通过研究珊瑚体内具有生态竞争的假交替单胞菌和弧菌之间的互作,揭示了一种移动基因组增加弧菌基因组可塑性,驱动弧菌遗传和表型多样化的机制。相关研究成果以“Mobile Genetic Elements Used by Competing Coral Microbial Populations Increase Genomic Plasticity”为题,在线发表于The ISME Journal(《国际微生物生态学学会杂志》)。

    弧菌属是物种多样性最丰富的细菌属之一,包含能引起人类疾病的病原体霍乱弧菌、副溶血弧菌和创伤弧菌,以及感染鱼类、珊瑚和其它海洋无脊椎动物的溶珊瑚弧菌、罗氏弧菌和溶藻弧菌等。弧菌是珊瑚共生总体的重要成员,具有多样的代谢活性,参与珊瑚共生体的有机质代谢和元素循环。弧菌大多具有生长快,运动能力强,生物膜形成能力强等特点,在复杂有机质丰富的区域容易过度生长降低珊瑚共生微生物物种多样性,影响珊瑚健康。对比健康和疾病珊瑚个体微生物多样性发现,珊瑚感染疾病后,微生物多样性明显降低。

    假交替单胞菌是珊瑚共生微生物的重要类群,其与弧菌具有相同的营养利用,占据相同的生态位,彼此之间会频繁竞争互作。以往的研究发现,假交替单胞菌由于其可以通过分泌活性化合物直接杀死弧菌、或者抑制群体感应等方式对抗弧菌,也因此被认为是一种潜在的珊瑚益生菌。 

    本研究利用团队前期建立的一种无创采样方法,从健康的丛生盔型珊瑚的消化循环腔中分离到优势的假交替单胞菌和溶藻弧菌。研究发现当溶藻弧菌与假交替单胞菌共培养时会产生部分弧菌突变株。深入的机制研究发现,来自假交替单胞菌属的两个可自主移动的遗传元件,一个整合接合元件 (integrative and conjugative element, ICE) 和一个可移动基因岛 (mobilizable genomic island, MGI) 的紧密合作,触发了溶藻弧菌中一个重要的“适应性基因岛”(Vibrio phenotype influencing island, VPII)的切除,导致溶藻弧菌的生物膜形成能力和噬菌体抗性显著降低,但同时其运动性增强,利于向其他生态位扩张。研究还发现,这些移动基因组(mobilome)成员(ICE、MGI和VPII)在革兰氏阴性菌中广泛存在,表明移动遗传元件的协同作用可能在增加微生物组成员的基因组可塑性方面非常普遍。

    珊瑚共生菌往往会采取多种策略来抑制弧菌的过度生长,该研究报道了一种新的策略,共生细菌利用移动基因组来增加竞争对手的基因组可塑性,导致生态位分化,维持珊瑚共生总体中微生物物种多样性,为利用珊瑚共生菌维持珊瑚共生总体菌群平衡保护造礁珊瑚的健康提供了技术支持。

    南海海洋所副研究员王鹏霞为该论文的第一作者,王晓雪为该论文的通讯作者。本研究工作得到广东省本土创新团队、国家自然科学基金、中国科学院青促会、南方海洋科学与工程广东省实验室(广州)重大专项等项目的资助。

    相关论文信息:https://www.nature.com/articles/s41396-022-01272-1

  • 原文来源:http://www.scsio.cas.cn/news/kydt/202206/t20220628_6467047.html
相关报告
  • 《万米深渊钩虾基因组揭示其环境适应性和种群历史》

    • 来源专题:中国科学院文献情报系统—海洋科技情报网
    • 编译者:熊萍
    • 发布时间:2025-03-14
    • 近日,中国科学院深海科学与工程研究所张海滨研究员团队联合华大生命科学研究院等单位,在深渊钩虾环境适应与种群遗传方面取得新进展,研究成果以 “The amphipod genome reveals population dynamics and adaptations to hadal environment” 为题发表于国际学术期刊《Cell》。该研究经过近十年的努力,在中国科学院部署实施的“全球深渊深潜探索计划(Global TREnD)”支持下,使用“探索一号”科考船,以及我国自主研制的全海深载人潜水器“奋斗者”号和全海深着陆器“原位实验”号、“天涯”号等装备,对马里亚纳海沟、雅浦海沟、菲律宾海盆等科考航次获得的深渊钩虾(Hirondellea gigas)样本进行研究,通过染色体水平基因组和群体遗传学分析,并综合转录组、宏基因组、代谢组等多组学数据,揭示了这种分布水深超过万米的端足类适应深渊环境的分子机制,及其群体分化与种群动态历史。 染色体水平超大基因组 研究团队利用PacBio HiFi长读长测序和Hi-C三维基因组技术,成功组装了H. gigas的染色体水平的高质量基因组(大小13.92 Gb)。基因组分析揭示了其两大主要特征:内含子延长和重复序列扩张。与近缘物种相比,H. gigas的内含子长度显著增加,主要是由于重复序列的插入,尤其是串联重复和长散在重复序列(LINEs)转座子。H. gigas基因组中71.98%为重复序列,主要为串联重复,占到基因组的46.03%,显著高于其他无脊椎动物。特别是,与其他无脊椎动物基因组相比,H. gigas基因组中长单元串联重复序列(小卫星,10-100 bp)的比例更高,其比例与无脊椎动物基因组大小正相关。这些重复的产生可能与深渊极端环境的适应有关。 地理隔离塑造了不同钩虾群体的遗传分化 研究团队对马里亚纳海沟的510只(11个群体)、雅浦海沟94只(1个群体)及西菲律宾海盆深渊区的18只(1个群体)H. gigas个体进行了高覆盖的全基因组重测序和群体遗传学分析。结果显示来自马里亚纳海沟11个不同深度(~7000-11000米)群体不存在遗传分化,表明生活在马里亚纳海沟内的钩虾是一个完全混合的群体,高静水压不会限制其在海沟内的垂直迁移。而西菲律宾海盆的钩虾群体与马里亚纳海沟的群体则表现出明显的遗传分化。这两个海沟间相隔~1500公里,表明地理隔离阻碍了群体间的基因交流。 冰期-间冰期气候变化可能影响深渊种群动态历史 研究结果显示H. gigas的有效种群在约100万年前经历了一次急剧下降,这与更新世深海温度的大幅波动高度吻合。经过遗传瓶颈后,钩虾群体又经历了种群扩张。这一结果说明,更新世时期大的冰期-间冰期气候变化可能不仅造成了陆地动物的大规模灭绝,而且也深刻影响了深海甚至深渊动物。 宿主-微生物协同合作适应深渊极端环境 研究团队通过宏基因组和代谢组学整合分析揭示了H.gigas与共生菌的协同合作可能是钩虾适应深渊极高静水压和食物匮乏环境的关键。 氧化三甲胺(TMAO)是一种渗透调节物质,在渗透压调节以及在高静水压条件下维持细胞完整性方面发挥着重要作用。检测发现,随着深度增加,钩虾肠道内容物中TMAO浓度显著升高,体组织中也呈现类似趋势。钩虾自身编码fmo3基因,可将三甲胺(TMA)转化为TMAO。而其优势共生菌Psychomonas的基因组中携带cutC和cutD基因簇,可将胆碱分解为TMA;同时拥有torYZ操纵子,可以将TMAO还原为TMA,从而调控宿主体内的TMAO浓度,形成动态平衡。 极低的生产力和有限的食物被认为是制约深海生物代谢的关键因素之一。有研究推测H. gigas可能具备消化木质碎屑的能力。本研究在H.gigas基因组中发现了4种内切葡聚糖酶基因,可以将纤维素初步分解为纤维二糖;在共生菌Psychomonas中发现了纤维二糖酶、celB基因和磷酸纤维二糖酶,负责将纤维二糖进一步转化为D-葡萄糖,从而形成完整的纤维素代谢通路。这一机制可能最终促使H.gigas能够高效利用深渊食物资源,从而使其在食物匮乏的深渊海沟中成为一大优势类群。 目前,理解动物如何适应深渊仍然是一个科学难题。本研究中获得的H. gigas的基因组是全球已发表的“最深”的动物基因组,基于群体研究产出的数据量是迄今为止全球最大规模的针对单一海洋物种的重测序,为研究深渊生态系统提供了宝贵的数据资源。本研究结果为深入理解生命如何适应深渊环境提供了新的见解。 该研究得到了中国科学院战略性先导科技专项(B类)、中国科学院国际伙伴计划、国家重点研发计划、海南省重大科技计划以及“全球深渊深潜探索计划(Global TREnD)”支持。 中国科学院深海科学与工程研究所张海滨为文章第一作者/共同通讯作者,刘君、周洋以及华大生命科学研究院孙帅、郭群飞、孟亮、陈建威、向薛雁为共同第一作者,华大生命科学研究院范广益、刘姗姗、徐讯为共同通讯作者。 论文链接:https://doi.org/ 10.1016/j.cell.2025.01.030
  • 《Nature | 转录-复制相互作用揭示了细菌基因组调控》

    • 来源专题:战略生物资源
    • 编译者:李康音
    • 发布时间:2024-01-29
    • 2024年1月24日,纽约大学格罗斯曼医学院等机构的研究人员在杂志Nature上发表了题为Transcription–replication interactions reveal bacterial genome regulation的文章。 生物体通过几种在整个基因组中重复出现的调控模式来确定数千个基因的转录率。在细菌中,基因的调控结构与其表达之间的关系对于单个模型基因回路是很清楚的。然而,在基因组尺度上缺乏对这些动态的更广泛视角,部分原因是细菌转录组学迄今为止只捕获了数百万个细胞平均表达的静态快照。因此,基因表达动力学的全部多样性及其与调控结构的关系仍然未知。 该研究提出了一种新的全基因组调节模式分类,该分类基于每个基因对其自身复制的转录反应,研究人员称之为转录-复制相互作用谱(TRIP)。通过分析单细菌RNA测序数据,研究人员发现对染色体复制普遍扰动的反应将生物调控因子与染色体上的生物物理分子事件相结合,揭示了基因的局部调控背景。虽然许多基因的 TRIP 符合基因剂量依赖性模式,但其他基因以不同的方式分化,这是由操纵子内位置和抑制状态等因素决定的。通过揭示基因表达异质性的潜在机制驱动因素,这项工作为模拟复制依赖性表达动力学提供了一个定量的生物物理框架。