《 Nature | AI模型发现全新抗生素类型》

  • 来源专题:战略生物资源
  • 编译者: 李康音
  • 发布时间:2023-12-21
  • 2023年12月20日,麻省理工学院 James Collins 教授团队在国际顶尖学术期刊 Nature 上发表了题为Discovery of a structural class of antibiotics with explainable deep learning 的研究论文。

    该研究利用人工智能(AI)和可解释的深度学习模型,从超过1200万种化合物中识别出一种革命性的新型抗生素类型,可以杀死临床上常见的超级细菌——耐甲氧西林金黄色葡萄球菌(MRSA)。而且,这些化合物对人类细胞的毒性很低,因此成为特别好的抗生素候选者。

    这项新研究的一个关键创新在于,研究人员弄清楚了深度学习(Deep Learning)模型使用了哪些信息来预测其抗生素效力。这种知识还可以帮助研究人员设计出更有效的其他治疗药物。

  • 原文来源:https://www.nature.com/articles/s41586-023-06887-8
相关报告
  • 《研究发现选择性激动SaClpP的新型抗生素》

    • 来源专题:转基因生物新品种培育
    • 编译者:姜丽华
    • 发布时间:2022-12-07
    •   ClpP是原核和真核生物中高度保守的ATP依赖的丝氨酸水解酶,负责调控蛋白质稳态。生理状态下,ClpP通过与伴侣蛋白(如ClpX形成ClpXP复合体)发挥水解酪蛋白的功能。小分子激动金黄色葡萄球菌ClpP(SaClpP)异常降解关键蛋白质,是抗生素发现的新策略。由于异常激活人源ClpP (HsClpP)可引起线粒体蛋白稳态失调从而产生细胞毒性,因此,理想的靶向性激动SaClpP的抗生素研究必须充分避免对线粒体HsClpP产生干扰。然而,目前尚未见选择性的SaClpP激动剂被报道。11月14日,中国科学院上海药物研究所杨财广课题组在《自然-通讯》(Nature Communications)上,在线发表了题为Anti-infective therapy using species-specific activators of Staphylococcus aureus ClpP的研究论文。   该研究利用高通量筛选发现Wnt信号通路抑制剂ICG-001可激动两种ClpP的酶活。通过对ICG-001进行结构优化,研究实现了一类新骨架ClpP激动剂ZG111通过引起线粒体蛋白稳态失调抗胰腺癌(Cell Chemical Biology, 2022, 29, 1396)。在构效关系研究基础上,研究获得了ZG111的衍生物ZG180,这对两种ClpP的激动活性均显著提高。科研人员在解析ZG180结合SaClpP与HsClpP的复合物晶体以及对比分析SaClpP与HsClpP蛋白序列中发现,ZG180在SaClpP蛋白结合口袋处的91位异亮氨酸与HsClpP的同源位置146位色氨酸在空间上具有较大差异。研究人员基于结构差异进一步开展设计,在ZG180中引入手性的甲基取代,得到(R)-和(S)-ZG197。生化实验表明,(R)-和(S)-ZG197可以选择性结合并激动SaClpP,而对HsClpP无明显激动活性。为此,该研究尝试解释(R)-和(S)-ZG197选择性的作用机制。研究发现,(S)-ZG197对SaClpPI91W突变体的作用减弱,而针对HsClpP的W146A突变则提高了(R)-ZG197的活性;HsClpP中存在着一个较长的C末端基序,而这个序列在SaClpP及其他原核生物的ClpP中缺失。去掉C端的HsClpP后(R)-ZG197的活性提高,而HsClpPW146A及其与C末端基序的联合作用可使(R)-和(S)-ZG197活性增强。   研究在细菌水平上进一步评价两个化合物的抗菌效果发现,(R)-和(S)-ZG197可以有效抑制临床多药耐药菌;体外杀菌实验也证实了(R)-和(S)-ZG197可以在6h内有效清除病原菌;同时,与传统抗生素利福平等联用,可杀死造成慢性感染的持留菌。研究基于斑马鱼和小鼠动物模型发现,(R)-和(S)-ZG197对耐甲氧西林金黄色葡萄球菌(MRSA)感染斑马鱼有显著的治疗作用,且在小鼠皮肤感染模型上可显著降低皮肤表面的细菌载量,从而有效抑制MRSA感染。   该研究获得了两个选择性作用于SaClpP而不影响HsClpP的小分子激动剂,揭示了实现选择性作用的机制,并从概念上验证了针对两种种属同源性较强的ClpP蛋白可以实现选择性激活。此外,该工作为治疗MRSA感染提供了可能,并推动了新靶点抗生素药物的发现。研究工作得到国家自然科学基金的资助,并获得上海科技大学季泉江课题组、同济大学附属东方医院吴文娟课题组、上海药物所蓝乐夫课题组、复旦大学甘建华课题组,以及上海同步辐射光源、上海公共卫生临床中心、上海药物所先导专项化合物资源库的支持。中国科学院大学杭州高等研究院科研人员参与研究。
  • 《Nature:科学家发明“分子诱饵”,不用抗生素也能除掉细菌》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:黄翠
    • 发布时间:2017-06-20
    • 抗生素耐药性问题是当今全球卫生面临的最大威胁之一。老牌抗生素耐药率不断升高,而近 30 年来又没有新的抗生素被发现或合成。这意味着,我们最终可能没有抗生素能对抗不断出现的耐药菌。因此,除了抗生素,科学家们也在努力寻找其他的抗菌方法。近日,华盛顿大学医学院的一项研究发现,一种分子诱饵可以靶向作用于肠道中能引起尿路感染的大肠杆菌,减少致病菌的同时不影响其他微生物组成。该研究发表于 6 月 14 日的 Nature 期刊上。 本研究的资深作者 Scott J. Hultgren 教授表示:“我们研究的最终目标是帮助患者处理并预防复发性尿路感染的常见问题,同时帮助解决全球抗菌素耐药性危机。” 由尿道致病性大肠杆菌(uropathogenic Escherichia coli,UPEC)引起的尿路感染(Urinary tract infections,UTIs)每年在全世界范围内影响着约 1.5 亿人。尿路感引起疼痛,排尿灼热和尿频。严重时,感染可以传播到肾脏和血液,甚至会危及生命。尽管抗生素能够有效治疗,但 30-50%的患者会经历复发。并且,尿道致病性大肠杆菌对最后一线抗生素的耐药性越来越强,使尿路感染成了抗生素耐药问题发生的“重灾区”。 因此,研究人员希望能找到一些新方法,减少肠道内尿道致病性大肠杆菌的数量,或许就能降低尿路感染的风险,并预防一些复发性感染。 诱饵分子与细菌菌毛结合,使其无法附着于肠道 在大肠杆菌中,有一组专门负责编码菌毛的基因,细菌表面的菌毛允许它们能够附着在组织上,如同一个分子“魔术贴”。没有这种菌毛,细菌就无法在肠道里生长。早期研究发现,这些菌毛能够附着在膀胱表面的甘露糖(mannose)上。 进而“抓住”膀胱上的甘露糖受体,因此细菌能够避免在人们排尿时被清除。而缺乏这种菌毛的细菌不能在小鼠中引起尿路感染。 此前,Hultgren 和共同作者,华盛顿大学生物化学和分子生物物理学副教授 James W. Janetka 博士,通过化学修饰甘露糖,构建了一组名为甘露糖苷(mannosides)的分子。这种分子与甘露糖类似,但它们能够通过菌毛更紧密地与细菌结合。然而,与甘露糖受体不同,这些甘露糖苷不附着于膀胱壁,因此与甘露糖苷结合的细菌被尿液冲洗出来。研究人员认为,甘露糖苷能够竞争性地与菌毛结合,因此通过甘露糖苷处理可以减少肠道中大肠杆菌的数量,并可能阻止细菌扩散到膀胱。 为了验证这个猜想,他们将大肠杆菌的致病菌株引入小鼠的膀胱和肠道内。研究人员给予小鼠三次口服剂量的甘露糖苷,然后在给予最后一剂甘露糖苷后检测小鼠膀胱和胆汁中的细菌数量。他们发现,致病细菌几乎被完全从膀胱中消除,在肠道中减少了一百倍。 该论文第一作者 Spaulding 说:“虽然我们并没有完全消除这种肠道细菌,但结果仍然很有希望。减少肠道中致病细菌的数量意味着它们进入尿道导致尿路感染的可能性更少。” 甘露糖苷对无害菌群影响更小 研究人员研究的菌毛类型在大肠杆菌的大多数菌株和一些相关的细菌种类中也发现。理论上,甘露糖苷处理可能导致肠道中带有同种菌毛的其他细菌被清除,就像抗生素治疗杀掉目标以外的细菌一样。消除无害细菌可能扰乱菌群平衡,导致肠道疾病,这也是广谱抗生素治疗的风险之一。 研究人员测量了甘露糖苷治疗后肠道微生物组成。他们发现,和致病菌相比,甘露糖苷对其他细菌的影响较小。这与用抗生素治疗后观察到的多种微生物丰度变化形成鲜明对照。 “这一发现令人兴奋,因为我们开发出一种像分子手术刀一样的治疗剂,”Spaulding 说,“它能特异性地清除目标细菌,同时又保留其余微生物群落的完整性。” 此外,由于甘露糖苷不是抗生素,它可能用于治疗由耐药菌株引起的尿路感染。尿路感染占美国每年所有抗生素处方的百分之九,因此这种避免使用抗生素治疗的方法有助于抑制抗生素耐药性的发展和传播。 不过,这项在小鼠模型中进行的研究还需要进一步验证才能确定这种方法是否适用于人类。