《对沉入博索半岛深海的微塑料的观察研究》

  • 来源专题:深海资源开发
  • 编译者: 徐冰烨
  • 发布时间:2024-09-12
  • 全球变化研究所(RIGC)、海洋生物多样性和环境评估研究中心(BioEnv)、海洋塑料研究小组(M-Plastics)、日本海洋地球科学技术厅(JAMSTEC)的研究员Takahito Ikenoue和他的同事首次通过实际观察估计了从地表沉入深海的微塑料(以下简称“MPs”)的数量。具体来说,他们分析了亚热带西北太平洋黑潮延伸再循环回旋中的海洋下沉粒子(图。1)。先前的观测表明,在博索半岛附近的黑潮扩展再循环回旋的深海底上积累了大量MP和巨塑性碎片※3。然而,很少有研究从定量上确定了多少国会议员沉入深海。

    在这项研究中,使用黑潮扩展再循环回旋内来自KEO站的海洋下沉粒子的存档样本来计算下沉MP的数量。从2014年7月1日至2016年10月2日,使用沉积物陷阱※4在KEO站停泊在4900米深的水深,每18-21天收集一次使用的样品。由于储存样品的聚乙烯瓶和用作防腐剂的福尔马林海水中的MP释放,人们对存档样本受到污染的担忧。然而,对在聚乙烯瓶中储存了大约两年半的福尔马林海水的分析表明,它每体积仅含有0.25 MPs,与海洋沉没颗粒中检测到的MPs数量相比,这可以忽略不计。

    分析了海洋下沉颗粒样本,并在所有样本中检测到MP,并确定了17种不同类型的塑料。检测到的90%的MP尺寸小于100μm。每平方米的下沉MP数量从每天111到889个不等。平均而言,有352块,类似于东北大西洋亚热带回流中沉没的MP。按质量计算,在观察期间,它们每天从4.5 × 10-3到3.8 × 10-1毫克不等,平均值为5.4 × 10-2毫克。沉没MP的季节性变化表明,由于表层初级产量※5的增加,它主要是由海洋下沉颗粒的增加驱动的。KEO站每年每平方米沉没的MP数量为20毫克。通过将这一值推断到黑潮扩展再循环回旋的整个区域,估计每年有0.028亿公吨的MP运输到4,900米的水深。这些结果表明,大量国会议员被黑潮流和黑潮扩展号运送到该地区,并积累在深海。

  • 原文来源:https://www.jamstec.go.jp/e/about/press_release/20240826/
相关报告
  • 《Scripps海洋学研究人员采用全球方法研究微塑料和微纤维》

    • 来源专题:中国科学院文献情报系统—海洋科技情报网
    • 编译者:liguiju
    • 发布时间:2019-09-20
    • Scripps海洋研究所的科学家正在努力了解海洋中的塑料降解,特别是称为微塑料和相关微纤维的较小颗粒。Scripps副研究员、海洋生物学家Dimitri Deheyn正在研究这些微材料的双重方法。他和博士后研究员Sarah-Jeanne Royer正在监测世界各地的微纤维,以更好地了解这些纤维如何进入和传播到环境中,同时还与工业界合作,找出限制塑料污染的可能途径并制定补救策略。 大多数微纤维是合成纤维,而且许多是基于石油的微纤维,使它们成为微塑料的一种形式。由于它们能够吸收更多的水和独特的化学结合特性,它们可以在许多纺织品中找到,包括衣服和清洁布,并且根据它们的超细性质来定义。这些纤维在洗涤纺织品和日常穿着时流入环境,并且正在成为科学家和环保主义者日益关注的问题。NOAA将微塑料定义为长度小于5毫米的任何塑料颗粒。这些微小的颗粒是由较大的塑料和合成材料的分解造成的,并且越来越受到环境和公共卫生官员的关注,他们担心吃鱼和其他摄入微塑料的海产品的影响。然而,研究人员仍在了解这些粒子对生态系统和人类的影响及范围。 Deheyn在发现这些材料在他实验室使用的成像条件下发出荧光后,对微纤维研究产生了兴趣。 Deheyn利用生物体产生的颜色或光线的变化作为早期指标,特别是在接触常规污染物如微量金属或与气候变化相关的环境变化时。近年来,Deheyn注意到他的图像中有越来越多的发光纤维。“当我看到这些纤维在我的样品中发出荧光时,我的第一反应是清洁显微镜的镜片,但我意识到这些纤维实际上是我样品的一部分,”Deheyn说。该研究的合作者Royer则专门研究环境中塑料产生的温室气体排放、塑料退化、海洋垃圾的命运和通道以及北太平洋的垃圾补丁。 Deheyn对荧光污染物的观察带来了新的机遇。他和研究伙伴一直在利用荧光开发新技术来检测从水样中滤出的微塑料。该技术由工程研究生Jessica Sandoval开发,称为自动微弹性标识符(AMI),旨在通过识别光纤的自动化过程取代人工计数。研究人员首先在紫外线照射下对滤光片进行成像,使塑料发出荧光。 Sandoval开发了软件来量化每个过滤器上的塑料量,并使用图像识别生成塑料特征的信息。“这是一个令人兴奋的第一步,使用自动化技术来协助监测这种普遍存在的海洋污染物,” Sandoval说,“通过这些技术,我们可以更轻松地处理来自全球的样品,并更好地了解微塑料的分布。” 作为Deheyn努力了解全球微纤维存在的一部分,研究人员已经使用该技术分析来自世界各地的水样。到目前为止,他发现微纤维可以在世界各地的样品中找到,包括在北极圈。“我们最终希望在全球范围内提供微纤维分布图,以便人们可以更好地评估我们食品中存在这些微小合成材料的效果,”Deheyn说。 除了从水、空气和沉积物样品中测量这些微纺织品之外,Deheyn和Royer的工作标志之一是分析50年来从斯克里普斯码头采集的水样,以确定这种污染的数量随时间的变化情况。这项研究还将展示哪种类型的纤维是最不易生物降解的,并且在过去50年中这种污染在何时变得明显。研究人员希望解决两个基本问题:原始材料在海洋环境中会如何降解,以及供应链中的哪个过程会改变纺织品的降解。 (於维樱 编译) 图片源自网络
  • 《深海微塑料通量首次实现原位监测》

    • 来源专题:中国科学院文献情报系统—海洋科技情报网
    • 编译者:liguiju
    • 发布时间:2022-12-01
    • 德国研究船POSEIDON在亚速尔群岛附近进行原位取样和分析,为微塑料从海洋表面到深海的向下流动提供了新线索,这些发现有助于更好地理解食物网的垂直运输动态和相关过程。此外,该研究还表明人造微塑料对天然海洋碳的显著叠加。该项目由基尔GEOMAR Helmholtz海洋研究中心领导的国际研究团队执行。研究结果近期发表于科学期刊《环境科学与技术》(Environmental Science and Technology)。 现如今,1.5亿吨塑料正在污染海洋,由于其分解缓慢,累积数量还在不断增加。目前的模型计算在海洋表面只能检测到大约1%的塑料。因为微塑料受到浮力,因此微塑料应该停留在海水表面,但是在海底发现了大约10000倍以上的微塑料。那么微塑料到底是如何到达那里的呢?更好地了解微塑料潜在的动力过程有助于保护海洋免受塑料污染以及海洋生物、食物网和物质循环的相关风险。 来自德国和美国的科学家根据现场测量,首次提供了北大西洋环流从海洋表面到深海的塑料运动数据,为微塑料的垂直通量提供了新的视角。在表层附近,研究者发现了高浓度的有机物质和海洋凝胶——这是一种天然胶,有助于形成更大的聚集物,也被称为海洋雪。研究者解释了尺寸在0.01至0.1毫米之间的微小塑料颗粒从海洋表面消失,因为它们成为海洋雪的一部分,成为浮游生物和大型动物的食物。较大的颗粒可以走相同的路线,但由于其质量较大,下沉速度也更快。 研究人员利用特殊的沉积物捕集器和各种光学和化学分析,在100米至150米的深度测量到了塑料聚合物的最高浓度。在阳光照射的浅水层,浮游生物和其他海洋生物也能找到食物。研究者表示海洋雪中包含的塑料颗粒越多,以其为食的海洋生物面临的风险就越大。 此外,海水中大量的微塑料使它们成为海洋碳循环的新组成部分。在北大西洋Gyre(塑料垃圾的热点)的样本中,多达3.8%的有机碳向下通量可以追溯到源自塑料的碳。研究结果表明,塑料不仅污染了环境,还渗透了自然碳循环。未来的研究必须考虑到,海洋中有机碳的比例可能会大幅增加,这不是因为通过光合作用吸收二氧化碳,而是来自人类废物中的塑料。(李亚清 编译)