《Science Advances刊发海洋试点国家实验室深海细菌耐压机制研究新进展》

  • 来源专题:中国科学院文献情报系统—海洋科技情报网
  • 编译者: liguiju
  • 发布时间:2021-04-09
  • 近日,海洋试点国家实验室海洋生物学与生物技术功能实验室张玉忠教授团队在Science Advances(IF=13.116)在线发表题为“Oxidation of trimethylamine to trimethylamine N-oxide facilitates high hydrostatic pressure tolerance in a generalist bacterial lineage(将三甲胺氧化为氧化三甲胺协助海洋细菌适应高静水压)”的研究论文。文章发表后,Nature research highlights以“How deep-sea bacteria thrive under pressure(深海细菌如何在高压下生存)”为题进行了研究亮点报道。张玉忠教授为该研究的通讯作者。

    深海具有高压、低温、黑暗等极端环境特性,曾被认为是生命的禁区,但近些年发现深海生存着大量的微生物资源,形成了独特的深海生态系统。高静水压会对微生物造成严重损伤,生活在深海的微生物类群必须能够耐受深海高静水压。到目前为止,虽然已经揭示了深海微生物适应高压环境的一些策略,例如增加细胞膜的流动性,调整细胞代谢途径等,但是至今没有发现和鉴定出深海微生物耐压相关的功能基因和代谢机制。

    本研究以深海细菌Myroides profundi D25为研究对象,发现该菌株能够利用三甲胺(TMA)转运载体TmaT吸收深海环境中的TMA,然后在细菌胞内诱导表达三甲胺单加氧酶MpTmm,将TMA氧化为氧化三甲胺(TMAO),并在胞内累积。在深海高压下,TMAO能够保护蛋白质等生物大分子维持正常的构象,发挥生物学功能,从而使得D25菌株具有耐受深海高静水压的能力,维持生存和生长。将TmaT-MpTmm蛋白在Escherichia coli和Bacillus subtilis菌株中表达,可显著提高E. coli和B. subtilis菌株的耐压能力。生物信息学分析表明TmaT和MpTmm同源蛋白在海洋细菌,尤其是拟杆菌门细菌中广泛分布,表明这可能是深海细菌普遍采用一种耐压策略,具有重要理论意义。

    该论文由青岛海洋科学与技术试点国家实验室、山东大学、中国海洋大学、上海海洋大学和英国University of Warwick等单位的相关学者合作完成。研究工作得到了国家自然科学基金项目、科技部重点研发计划、山东省重大科技创新工程和泰山学者攀登计划等项目的资助。

    Science Advances文章链接:https://doi.org/10.1126/sciadv.abf9941。

  • 原文来源:http://www.qnlm.ac/page?a=5&b=2&c=266&d=1&p=detail
相关报告
  • 《Science子刊刊发海洋试点国家实验室海洋环流与气候变化最新研究成果》

    • 来源专题:中国科学院文献情报系统—海洋科技情报网
    • 编译者:liguiju
    • 发布时间:2020-02-14
    • 2月5日,国际顶级学术期刊Science(《科学》)子刊Science Advances(《科学进展》)在线发表了题为“Deep-reaching acceleration of global mean ocean circulation over the past two decades”(过去二十多年延及深海的全球平均海洋环流加速)的最新研究成果。该项成果由海洋试点国家实验室海洋动力过程与气候功能实验室(以下简称海气功能实验室)胡石建研究员为第一作者兼通讯作者,海气功能实验室王凡研究员为联合通讯作者,海气功能实验室官聪博士、海洋试点国家实验室学术委员会副主任胡敦欣院士和海洋试点国家实验室-澳大利亚联邦科工组织南半球海洋研究中心主任蔡文炬教授等为合著者的科研团队共同完成。该成果首次揭示了全球平均海洋环流在过去20多年以来的加速现象,阐明了海洋环流加速的能量来源、物理机制以及人类温室气体排放在其中的重要作用。 大尺度海洋环流是地球物质和能量再分配的主要动力过程,对海洋环境和气候系统具有非常重要的作用。在全球气候变暖背景下,大尺度海洋环流如何变化是一个重要的科学问题。由于内部动力过程和自然振荡的调节,海洋环流变化具有极强的区域性和显著的复杂性,不同区域的海洋环流对气候变暖的响应非常不同。同时,由于人类仍然缺乏对海洋环流的系统性连续直接观测,数据匮乏,导致学界一直未能解析气候变暖下海洋环流变化的趋势背景。 针对上述问题,研究团队集成多种全球海洋环流和海表面风速的数据资料,包括多源观测资料、再分析资料、同化资料和模式资料,发现自1990年代早期以来的近20年,全球积分的大尺度海洋动能存在显著增长趋势,这表明全球平均海洋环流存在显著的加速趋势。数据显示,这种大尺度海洋动能的增加主要集中在全球热带海域,并且延伸至数千米的深海。这种全球平均海洋环流加速主要是由行星尺度的海表面风加速引起的。 进一步分析表明,全球平均海洋环流的加速呈现出一种长期趋势,而温室气体持续排放在其中扮演了非常重要的角色。尽管太平洋年代际振荡(PDO)对全球积分的大尺度海洋动能具有重要影响且自上世纪90年代以来PDO发生了明显的位相转变,但PDO的位相转变在全球平均海洋环流加速过程中仅作出了较小的贡献。温室气体排放相关的外强迫是近20多年以来全球平均海洋环流加速的主要原因。文章指出,在温室气体排放持续增加的背景下,海洋和地球气候系统未来如何做出响应无疑是非常重要的问题,这对理解过去和预测未来海洋和地球气候系统的长期变化具有重要意义。 该成果是海洋试点国家实验室在全球海洋环流与气候变化研究领域取得的重要突破进展,进一步彰显了海洋试点国家实验室在全球海洋与气候变化领域的创新引领实力。成果在线发表当日即获得国际科学界的广泛关注。Science期刊新闻栏目连续发表两篇新闻对该项研究进行了报道,美国《科学家》杂志、《华盛顿邮报》等多家国际媒体报道了该研究成果及其重要意义,多位国际著名学者对该成果进行了点评。美国亚利桑那大学Joellen Russell教授评论道:“这是一篇十分令人兴奋的论文,我认为结果是强有力的,它们很重要、令人震惊”(This is quite an exciting paper. I think the results are robust, I think they’re important, and I think they are a little shocking)。美国伍兹霍尔海洋研究所Susan Wijffels研究员指出:“这项工作将激发很多后续工作” (It’s going to stimulate a lot of other work)。
  • 《Nature Communications刊发海洋试点国家实验室弧菌胶原蛋白酶机制研究新进展》

    • 来源专题:中国科学院文献情报系统—海洋科技情报网
    • 编译者:liguiju
    • 发布时间:2022-02-18
    • 海洋试点国家实验室海洋生物学与生物技术功能实验室成员张玉忠教授领衔的研究团队长期从事海洋微生物学与微生物海洋学研究,近年来在海洋微生物驱动的碳、氮、硫元素循环领域取得了系列研究成果。近期在海洋微生学、海洋微生物酶学研究领域又取得重要研究进展。 致病性弧菌是人类和水生动物的常见病原菌,其分泌的胶原蛋白酶与弧菌的发病机制密切相关,已经被确定为重要的致病因子,通过对宿主细胞外基质中胶原组分的降解作用协助其他毒素的扩散。目前弧菌胶原酶识别和降解胶原蛋白的分子机制尚不完全清楚。 海洋致病菌Vibrio harveyi VHJR7胶原酶VhaC是一个多结构域蛋白,由肽酶M9N结构域(激活结构域)和肽酶M9结构域(肽酶结构域)构成的胶原酶催化模块以及附属的PKD-like结构域和PPC结构域组成。本研究团队利用原子力显微镜观察和生化实验分析揭示了VhaC通过率先降解C端端肽游离出原胶原分子片段,并以切割胶原蛋白肽链Gly-X-Y重复三联体中Y-Gly键的方式逐步将原胶原片段水解成小肽和氨基酸的降解模式。在此基础上,利用小角度射线散射研究了VhaC全酶在溶液中的整体构象和域间排列并解析了VhaC催化模块的马鞍状晶体结构。通过生化实验和分子动力学模拟,阐明了VhaC催化模块利用激活结构域识别结合胶原三螺旋,随后通过构象闭合运动使底物靠近肽酶结构域催化中心并完成催化水解的过程和分子机制。本研究提出了M9A亚家族弧菌胶原酶VhaC对胶原蛋白的降解机制模型,有助于更好地理解弧菌胶原酶的致病性作用,为以弧菌胶原酶作为药物靶点设计新型抗弧菌感染药物提供了信息。 相关研究成果发表在Nature Communications(自然?通讯,五年IF=15.805),论文题为“Structure of Vibrio collagenase VhaC provides insight into the mechanism of bacterial collagenolysis(弧菌胶原蛋白酶VhaC的结构研究深入揭示细菌酶解胶原蛋白机制)”。张玉忠教授和陈秀兰教授为该研究的共同通讯作者,团队博士研究生王琰和王鹏副教授为并列第一作者。 该论文由青岛海洋科学与技术试点国家实验室、山东大学、中国海洋大学、中国极地研究中心、英国University of Warwick等单位的相关学者合作完成。研究工作得到了科技部重点研发计划、国家自然科学基金项目、山东省重大科技创新工程、泰山学者攀登计划等项目的资助。 文章链接:https://www.nature.com/articles/s41467-022-28264-1