《上海交大薛红卫课题组与合作者揭示磷脂酸细胞器间转运进而调控叶绿体发育的机制》

  • 来源专题:转基因生物新品种培育
  • 编译者: 姜丽华
  • 发布时间:2023-02-25
  • 光合真核生物将太阳能转化成化学能,这一过程为地球生命提供了赖以生存的食物和能量。叶绿体内囊体膜是实现光合作用过程的必要场所,并由合适的脂类组装以保证其功能的发挥。磷脂酸(phosphatidic acid,PA)是内囊体膜脂质合成的重要前体。PA主要在内质网合成,并被转运至叶绿体进一步加工合成糖脂(内囊体特有且重要的脂类)。然而,脂质从其它细胞器转运到叶绿体的分子基础仍有待进一步阐明。

    Sec14蛋白具有Sec14结构域,是一类在所有真核生物中被鉴定的保守蛋白。在动物和酵母中的研究发现,Sec14蛋白可以结合和转运广泛的脂质,在胞内可以转运磷脂酰胆碱(PC)、磷脂酰肌醇(PI)和磷脂酰乙醇胺(PE)等脂质,然而对植物Sec14蛋白家族在脂质转运方面的研究目前仍较少。

    2023年1月31日,上海交通大学农业与生物学院薛红卫课题组与苏州大学医学院吴嘉炜课题组合作在PNAS发表了题为Arabidopsis Sec14 proteins (SFH5 and SFH7) mediate inter-organelle transport of phosphatidic acid and regulate chloroplast development的研究论文,通过遗传学、结构生物学研究,阐明了PA由内质网转运至叶绿体的分子基础,及其调控类囊体糖脂合成的分子机制。

    拟南芥Sec14蛋白家族成员AtSFH5和AtSFH7定位于内质网和叶绿体,功能研究表明其参与叶绿体发育的调控,sfh5 sfh7双突变体的叶绿素合成以及叶绿体内囊体结构出现异常。生化分析表明AtSFH5和AtSFH7与PA特异结合,进一步通过结构生物学对与L-α-磷脂酸(L-α-PA)复合物中的AtSFH5-Sec14结构域的晶体结构分析表明,PA分子的两条脂肪酰基结合在AtSFH5和AtSFH7的Sec14结构域的中心位置,并区别于动物/酵母Sec14蛋白结合PC/PE/PI的结合模式,解析了AtSFH5和AtSFH7特异性转运PA的结构基础。利用叶绿体开展的定量脂质组学分析表明,AtSFH5和AtSFH7缺失下PA和单半乳糖酰二酰基甘油(MGDG),特别是MGDG中sn-2位置的C18脂肪酰基显著减少,表明内质网到叶绿体的脂质转运异常,证明了AtSFH5和AtSFH7将PA从内质网转运至叶绿体进行糖脂合成的重要作用。

    综上,该研究阐明了AtSFH5和AtSFH7通过胞内转运PA调控叶绿体内囊体结构/植物光合作用的分子机制,揭示了植物SFH蛋白在细胞器间PA转运中的作用并阐明了其结构基础,为细胞器间的脂质转运提供了一个分子模型,也为质体内共生进化理论提供了脂质信号交流的分子证据。

    复旦大学生命科学学院姚红艳副研究员、苏州大学医学院鲁耀骐博士、中国科学院分子植物科学卓越创新中心杨晓莉博士为本文共同第一作者。上海交通大学薛红卫教授和苏州大学医学院吴嘉炜教授为共同通讯作者。苏州大学王晓清硕士生和罗智璞教授,上海交通大学林德立博士参与了研究工作。该研究得到了国家自然科学基金的资助。

    论文链接:https://www.pnas.org/doi/10.1073/pnas.2221637120

  • 原文来源:https://news.sjtu.edu.cn/jdzh/20230202/178666.html
相关报告
  • 《上海交大药学院经莉莉课题组揭示共生菌对造血干细胞和祖细胞发育的调节作用和机制》

    • 来源专题:转基因生物新品种培育
    • 编译者:姜丽华
    • 发布时间:2023-02-25
    • 造血干细胞和祖细胞(HSPC)是具有自我更新和分化产生所有类型血细胞的起始细胞,对维持机体终生造血功能及血液系统和全身健康至关重要。HSPC产生于胚胎期,随后支持胚胎和出生后整个生命周期的造血。HSPC的形成受到细胞内外多种因素的动态精准调控。肠道共生菌作为重要的环境因素,影响宿主多种生理过程,包括调节成年机体中HSPC的稳态,但肠道菌对早期HSPC形成的影响尚不清楚。 近日,上海交通大学药学院经莉莉团队在Cell Reports期刊上发表了以“The microbiota regulates hematopoietic stem and progenitor cell development by mediating inflammatory signals in the niche”为题的研究成果。 该研究利用斑马鱼模式动物探究了共生菌对胚胎HSPC发育的调节及作用机制。通过无菌(GF)斑马鱼胚胎模型,本研究发现肠道共生菌缺失后,胚胎HSPC和免疫细胞的发育明显下降,因此共生菌促进HSPC成长。而chd8基因突变后引起肠道发育和肠道菌群建立异常,并且失衡的肠道菌抑制宿主早期HSPC的形成和增强免疫细胞分化 (图1)。上述研究说明胚胎HSPC的正常生长需要“健康”的共生菌群参与。 本研究接着分析了单个肠道菌对宿主HSPC形成的具体影响。通过单菌移植实验,研究发现不同细菌对HSPC发育发挥不同作用,并且与该细菌调节免疫细胞生长的作用相独立。肠道菌调节HSPC发育的作用与其诱导HSPC微环境中炎症因子的水平直接相关。胚胎正常发育过程中,肠道菌维持HSPC微环境中炎症因子的基础表达水平从而促进HSPC生长,而chd8-/-中失衡的肠道菌引起宿主HSPC微环境中较高的炎症因子表达,从而抑制HSPC形成和诱导免疫细胞分化。本研究中,还筛选出一株具有免疫调节作用的气单胞菌株(Aero. 1)。该菌在无菌胚胎定植后,促进肠道中炎症因子的表达,但不能诱导HSPC微环境中炎症因子的表达。接种该菌株到chd8-/-胚胎后,特异地降低宿主HSPC微环境中炎症因子水平,恢复宿主HSPC的生长 (图2)。 本研究结果揭示了肠道共生菌对胚胎早期HSPC发育的调节作用和机制(图3)。考虑到 HSPC 主要在胚胎期产生,研究结果也表明早期共生菌的生态失调可能对宿主终生造血产生影响。 药学院博士研究生钟丹和博士后蒋昊韡为共同第一作者,经莉莉副教授为论文通讯作者,上海交通大学生命科学技术学院张晨虹研究员为共同通讯作者。该研究得到国家自然科学基因青年项目和上海市科委人才计划的资助。
  • 《上海交大张大兵团队揭示大麦MADS1调控外稃和芒发育的作用机制》

    • 来源专题:生物育种
    • 编译者:季雪婧
    • 发布时间:2024-01-24
    •     内外稃是禾本科作物特有的花器官,决定籽粒的大小并影响产量。麦类作物稃片顶端还有针状的芒结构,具有保护种子不受鸟类等动物的吞食、促进种子传播和进行光合作用增加籽粒营养物质积累的作用。然而,控制麦类作物内外稃和芒发育的分子和遗传调控网络尚不清楚。     近日,Nature Communications在线发表了上海交通大学张大兵教授团队题为“MADS1-regulated lemma and awn development benefits barley yield”的研究论文,该研究报道了大麦MADS1通过调控外稃和芒的发育影响籽粒大小和产量的机制。上海交通大学生命科学技术学院石建新研究员和南京农业大学李刚教授为论文共同通讯作者,上海交通大学张月雅博士和沈超群博士为本文共同第一作者。 本研究通过基因编辑获得了大麦中SEPALLATA类MADS-box基因HvMADS1的突变体,观察发现相对于野生型,突变体的外稃宽度变窄、芒变短,籽粒宽度、厚度和千粒重显著降低。进一步的研究发现,HvMADS1与花器官发育A类调控因子HvAPETALA2(HvAP2)形成蛋白复合体,诱导SHORT INTERNODES(HvSHI)和DROOPING LEAF(HvDL)2个关键下游转录因子的表达,通过调控细胞增殖促进外稃宽度发育和芒的伸长。此外,分析发现HvMADS1在小麦中的同源基因具有保守的生物学功能。