《Highly Efficient Organic Light-Emitting Diodes with Phosphorescent Emitters Having High Quantum Yield and Horizontal Orientation of Transition Dipole Moments》

  • 来源专题:绿色印刷—OLED
  • 编译者: 张宗鹏
  • 发布时间:2016-04-13
  • Ancillary ligands in heteroleptic iridium complexes significantly influence the orientation of the transition dipole moments. Ir(ppy)3, a homoleptic iridium complex, exhibits isotropic dipole orientation, whereas the heteroleptic Ir complexes of Ir(ppy)2tmd show a highly preferred dipole orientation (78%) in the horizontal direction. In addition, we demonstrate an unprecedented highly efficient green OLED exhibiting an EQE of 32.3% and a power efficiency of 142.5 lm/W by using an emitter with high quantum yield and horizontally oriented dipoles.

  • 原文来源:;http://onlinelibrary.wiley.com/doi/10.1002/adma.201305733/abstract
相关报告
  • 《Understanding and predicting the orientation of heteroleptic phosphors in organic light-emitting materials》

    • 来源专题:绿色印刷—LED
    • 编译者:张宗鹏
    • 发布时间:2016-04-13
    • Controlling the alignment of the emitting molecules used as dopants in organic light-emitting diodes is an effective strategy to improve the outcoupling efficiency of these devices. To explore the mechanism behind the orientation of dopants in films of organic host materials, we synthesized a coumarin-based ligand that was cyclometalated onto an iridium core to form three phosphorescent heteroleptic molecules, (bppo)2Ir(acac), (bppo)2Ir(ppy) and (ppy)2Ir(bppo) (bppo represents benzopyranopyridinone, ppy represents 2-phenylpyridinate, and acac represents acetylacetonate). Each emitter was doped into a 4,4′-bis(N-carbazolyl)-1,1′-biphenyl host layer, and the resultant orientation of their transition dipole moment vectors was measured by angle-dependent p-polarized photoluminescent emission spectroscopy. In solid films, (bppo)2Ir(acac) is found to have a largely horizontal transition dipole vector orientation relative to the substrate, whereas (ppy)2Ir(bppo) and (bppo)2Ir(ppy) are isotropic. We propose that the inherent asymmetry at the surface of the growing film promotes dopant alignment in these otherwise amorphous films. Modelling the net orientation of the transition dipole moments of these materials yields general design rules for further improving horizontal orientation.
  • 《Deep blue phosphorescent organic light-emitting diodes with very high brightness and efficiency》

    • 来源专题:绿色印刷—LED
    • 编译者:张宗鹏
    • 发布时间:2016-04-13
    • The combination of both very high brightness and deep blue emission from phosphorescent organic light-emitting diodes (PHOLED) is required for both display and lighting applications, yet so far has not been reported. A source of this difficulty is the absence of electron/exciton blocking layers (EBL) that are compatible with the high triplet energy of the deep blue dopant and the high frontier orbital energies of hosts needed to transport charge. Here, we show that N-heterocyclic carbene (NHC) Ir(III) complexes can serve as both deep blue emitters and efficient hole-conducting EBLs. The NHC EBLs enable very high brightness (>7,800 cd m−2) operation, while achieving deep blue emission with colour coordinates of [0.16, 0.09], suitable for most demanding display applications. We find that both the facial and the meridional isomers of the dopant have high efficiencies that arise from the unusual properties of the NHC ligand—that is, the complexes possess a strong metal–ligand bond that destabilizes the non-radiative metal-centred ligand-field states. Our results represent an advance in blue-emitting PHOLED architectures and materials combinations that meet the requirements of many critical illumination applications.