基因工程微生物长期被用来生产药物和精细化学品。2018年11月16日《科学》报道,哈佛大学Wyss生物启发工程研究所和哈佛JohnA. Paulson工程与应用科学学院的研究者将微生物与半导体技术结合,使微生物能从光中收集能量,提高其生物合成的潜力。
第一个生物-无机混合系统(简称生物混合系统)主要集中于对二氧化碳的固定和替代能源的生产,其关键技术瓶颈是,有毒金属制成的半导体直接装配在细菌细胞上会对细菌造成伤害,而且目前只关注于碳固定微生物,产物局限于相对简单的分子。
此次研究者将微生物扩展到了工业应用广泛且基因易于操作的酵母。面包酵母(Saccharomyces cerevisiae)产生莽草酸以产生一些用于合成蛋白质和其他生物分子的构件。莽草酸是抗病毒药物(达菲Tamiflu等)、营养保健品和精细化学品的重要前体。研究者通过遗传修饰,使细胞将其主要营养源(葡萄糖)所含的更多碳原子汇集到产生莽草酸的途径中,减少替代途径。产量提高的另一个关键是研究者利用半导体为莽草酸的最后一步提供能量。研究者使用天然多酚基“胶水”涂覆磷化铟纳米颗粒实现无毒处理。磷化铟半导体附着在酵母细胞表面,从光中收集电子(能量)并将它们交给酵母细胞,进入细胞质。电子提升了NADPH分子的水平,为莽草酸生物合成提供能量。当酵母生物杂交细胞处于黑暗时,它们产生更简单的有机分子,如甘油和乙醇;当暴露在光线中时,它们很容易转变为莽草酸生产模式,生产效率提高11倍。
这种可扩展的方法为未来生物混合技术发展打开一个全新的局面。在不远的将来,半导体和基因工程酵母细胞可以以一种即插即用的方式融合,从而扩大制造工艺的类型和生物产品的范围。