《高效发光二极管用钙钛矿纳米晶体的全面缺陷抑制》

  • 来源专题:纳米科技
  • 编译者: 郭文姣
  • 发布时间:2021-01-05
  • 自然于2021年1月04日发布关于纳米晶体的内容,文章指出由于缺乏既能抑制缺陷形成又能增强载流子约束的材料策略,金属卤化钙钛矿纳米晶体(pnc)的电致发光效率受到限制。在这里,我们报道了一种单掺杂的合金策略,它产生更小的、单分散的胶体粒子(限制电子和空穴,促进辐射复合),具有更少的表面缺陷(减少非辐射复合)。胍掺杂到溴化铅甲酰胺pnc中会产生有限的体溶解度,同时在pnc中产生一个熵稳定相,导致更小的pnc具有更多的载流子约束。多余的胍分离到表面,稳定不协调的位置。此外,采用表面稳定的1,3,5-三(溴甲基)-2,4,6-三乙苯作为溴空位愈合剂。结果表明,采用半球形透镜的pnc基发光二极管的电流效率为108 cd A−1(外量子效率为23.4%),外量子效率为205 cd A−1(外量子效率为45.5%)。

相关报告
  • 《复旦开发高效的蓝光发射钙钛矿纳米晶》

    • 来源专题:光电情报网信息监测服务平台
    • 编译者:husisi
    • 发布时间:2020-09-25
    • 胶体CsPbX3(X=Br、Cl和I)钙钛矿纳米晶在整个可见光谱上表现出可调谐的带隙,在绿色和红色区域表现出较高的光致发光量子产率。但是,由于缺乏高效的蓝光钙钛矿纳米晶,限制了它们在光电应用中的发展。 来自复旦大学张树宇副教授团队最新研究表明,CsPbBr3纳米晶通过钕掺杂可以实现从绿光到深蓝光的可调谐光电发射,在中心波长在459 nm处的纳米晶具有90%的量子产率。相关论文以题为“Highly Efficient Blue-Emitting CsPbBr3 Perovskite Nanocrystals through Neodymium Doping”发表在Advanced Science。 自2015年第一次报告以来,全无机铯铅卤化物钙钛矿CsPbX3 (X=Br、Cl和I)纳米晶(NCs)经历了快速发展。由于其高光致发光量子产率(PLQYs)和窄带单峰发射剖面,组成和相关带隙的灵活性以及材料合成过程简单,在发光二极管、激光器、太阳能电池、和光电探测等领域具有很大的应用潜力。特别是,NCs可以作为白色发光二极管(WLED)的颜色转换荧光粉,并表现出广泛的色域覆盖。此外,光谱的蓝色部分通常是从氯化物基钙钛矿NCs中获得的,该NCs目前具有较低的稳定性和相对较低的PLQY,从而限制了钙钛矿NCs在器件中的应用。 解决这些挑战的一个有效的解决方案是用B位掺杂剂完全或部分取代Pb2+离子。掺杂离子不仅降低了铅的毒性,而且可以通过接近优化的Goldschmidt公差因子来提高CsPbX3 NCs的热稳定性和相稳定性。B位阳离子在决定钙钛矿的电子能带结构及其发射特性方面也起着至关重要的作用。最近的研究已经证明了成功的B位掺杂采用碱土金属离子、过渡金属离子、类金属离子和镧系离子。双发射是Mn2+、Yb3+、Er3+和Eu3+等掺杂物的另一个常见特征,它来源于钙钛矿主体到掺杂客体的能量转移,但是,原始NCs的窄带单峰发射不可避免地受到损害。 通过Sn2+,Cd2+,Zn2+或Al3+部分交换Pb2+可以成功地实现光致发光(PL)蓝移,而没有其他发射峰。但是上述蓝光发射NCs的PLQY仍然不令人满意。为了解决这一问题,通过将Nd3+引入到CsPbBr3 NCs中作为B位掺杂剂,合成了高效的蓝色发射钙钛矿NCS。 图1. a)CsPbBr3:xNd­3+ (x=7.2%) NCs和原始CsPbBr3NCs薄膜的XPS谱。高分辨率XPS光谱分别对应于b)Nd3+3d,c)Pb2+4f和d)Br− 3d。空心圆形符号表示原始数据,实心曲线表示相应的拟合曲线 图2. a)原始CsPbBr3的计算带结构。轨道特征显示了Pb 6s,6p和Br 4p轨道。b)原始CsPbBr3的VBM和CBM的部分电荷密度。c)计算的CsPbBr3:xNd3+的能带结构(x =12.5%)。轨道特征显示了Pb 6s,6p和Br 4p轨道以及Nd 5d轨道。d)Nd3+掺杂的CsPbBr3的VBM和CBM的部分电荷密度 图3. CsPbBr3:xNd3+NCs的溶液时间分辨光致发光衰减曲线 图4. a)WLED的发射光谱。插图显示了工作中的WLED的相关照片。b)与NTSC电视标准和Rec. 2020年标准相比,本工作中WLED的色域。白点显示WLED设备的CIE颜色坐标为(0.34,0.33) 总的来说,通过便捷的室温合成方法首次成功的将Nd3+成功取代了胶体CsPbBr3 NCs中的Pb2+。掺杂浓度可用于以受控方式将发射光谱从绿色调整为蓝色。发出蓝色的CsPbBr3:xNd3+(x = 7.2%)NCs的PLQY值为90%,光谱宽度为19 nm。使用第一性原理计算证明带隙可调性主要由掺杂剂诱导的电子变化驱动,而PLQY的增加与掺杂剂诱导的电子变化驱动的激子结合能增加以及掺杂剂诱导的激子振动子强度提高有关。这种微观上的理解为胶体CsPbX3 NC中的B部位组成工程开辟了新的可能性。
  • 《新型钙钛矿纳米晶体以塑料“毛发”和二氧化硅为外壳,表现出更强的耐用性》

    • 来源专题:可再生能源
    • 编译者:pengh
    • 发布时间:2019-12-02
    • 钙钛矿纳米晶体有望改善从激光到发光二极管等各种光电设备,但其耐久性问题仍然限制了这种材料的广泛商业用途。 佐治亚理工学院(Georgia Institute of Technology)的研究人员展示了一种旨在解决材料耐久性问题的新方法:将钙钛矿包裹在由塑料和二氧化硅制成的双层保护系统中。 在11月29日发表在《科学进展》(Science Advances)杂志上的一项研究中,研究团队描述了一个多步骤的过程,以生产出在潮湿环境中表现出很强抗降解能力的包覆钙钛矿纳米晶体。 “钙钛矿纳米晶体非常容易降解,尤其是当它们接触到水的时候,”佐治亚理工学院材料科学与工程学院教授林志群说。“这种双壳系统提供了两层保护,同时允许每个纳米晶体保持不同和独立的单元,实现优化光电子应用所需的钙钛矿的最大表面积和其他物理特性。” 钙钛矿这个术语指的是这种材料的晶体结构,通常由三部分组成:两个不同大小的阳离子和一个介于两者之间的阴离子。几十年来,研究人员一直在尝试用各种化学物质来替代这种结构,以获得独特的特性。特别是,钙钛矿含有卤化物化合物,如溴和碘,可以作为光吸收剂和发射器。 在这项研究中,美国空军科学研究办公室的支持下,美国国家科学基金会,美国国防威胁降低机构和能源部,林的小组在卤化最常见的配置,形成从methylammonium,铅和溴化。 他们的过程包括首先在一个单糖分子上生长21个聚合物臂来形成星形塑料分子,作为“纳米反应器”。然后,一旦二氧化硅和钙钛矿纳米晶体的前体化学物质被装载到塑料分子上,几个阶段的化学反应就产生了最终的体系。 星状塑料发挥了纳米反应器的作用后,星状的成分就像头发一样永久地附着在包裹钙钛矿的二氧化硅上。这些毛发充当第一层保护,排斥水,防止纳米晶体聚集。随后的一层硅增加了进一步的保护,如果任何水通过防水的塑料头发。 “在过去五年中,钙钛矿纳米晶体的合成和应用一直是一个快速发展的研究领域,”该论文的合著者、佐治亚理工学院(Georgia Tech)前研究生何艳杰说。“我们的战略,基于一个明智设计的星状塑料作为纳米反应器,在高质量钙钛矿纳米晶体的制造上实现了前所未有的控制,具有复杂的结构,这是传统方法无法达到的。” 为了测试这种材料,研究人员在玻璃基片上覆盖了一层钙钛矿薄膜,并进行了几次应力测试,包括将整个样品浸泡在去离子水中。通过在样品上照射紫外线,他们发现钙钛矿的光致发光特性在30分钟的测试中从未减弱。作为对比,研究人员还将未封装的钙钛矿浸入水中,观察它们的光致发光在几秒钟内消失。 林说,新方法释放了调整双壳纳米晶体表面特性以增强其在更大范围应用中的性能的可能性。 从星形塑料制造新的钙钛矿纳米晶体的过程也是独特的,因为它使用了低毒性的低沸点溶剂。 未来的研究可能集中在开发不同的钙钛矿纳米晶体系统,包括全无机钙钛矿,双钙钛矿和掺杂钙钛矿。 Lin说:“我们认为这种钙钛矿纳米晶体将非常有用,可用于制造用于生物成像,生物传感器,光子传感器和辐射检测以及下一代LED,激光器和闪烁体的耐用光电设备。” “这是因为这些毛状钙钛矿纳米晶体具有独特的优势,包括高缺陷耐受性,较窄的发射带和高闪烁效率。”