《中国科学院:铂单原子催化剂研究取得进展》

  • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
  • 编译者: 冯瑞华
  • 发布时间:2018-06-26
  • 中国科学院上海应用物理研究所上海光源材料与能源部研究员司锐与中国科学技术大学教授曾杰、李震宇合作,利用同步辐射X射线吸收精细结构谱学技术,在铂单原子催化剂“构效关系”研究方面取得新进展,相关研究成果发表在化学类国际期刊《纳米通讯》(Nano Lett., 2018,18, 3785-3791)上。

    负载型单原子催化剂的特点是活性组分含量极低(<1 wt.%),且无完整晶体结构,常规表征手段往往不适用。X射线吸收精细结构谱学(XAFS)技术因其元素敏感特性,可有效地探测低含量组分的非有序配位结构。在化学制备过程中,溶液相控制合成方法可有效地将金属镍(Ni)纳米晶上的部分Ni0原子替换为Pt0原子,所得Pt1/Ni催化剂对于硝基化合物选择性加氢反应具有高活性与选择性。通过高角环形暗场相扫描透射电子显微镜(HAADF-STEM)照片(图A)及其高倍数球差校正后的图像(图B),可以从微区上确定Ni纳米晶表面存在替换Ni位点的Pt单原子。司锐利用XAFS技术,首先从X射线吸收近边谱图(XANES)上分析证实了Pt元素为0价(类似金属Pt)、并无离子态Ptd 成分存在(图C);再通过扩展X射线吸收精细结构谱图(EXAFS)拟合确认了样品中只存在Pt-Ni键、无Pt-Pt键(图D)。所以,Pt是以单原子形式存在的,且每个Pt原子均只与Ni原子配位。上述结论对于合理计算选择性加氢反应的效率至关重要,也为Pt-Ni金属-金属键相互作用是催化活性物种提供了可靠的实验证据。

    与XAFS相关的研究得到了国家自然科学基金(21373259)、中国科学院相关人才计划、中国科学院战略性先导纳米专项(XDA09030102)的共同支持,相关测试实验在上海光源BL14W1线站上完成。

    Pt1/Ni的HAADF-STEM照片(a)及其轮廓分析(b)、XANES谱图(c)和EXAFS谱图(d)

  • 原文来源:http://www.xincailiao.com/news/news_detail.aspx?id=204807
相关报告
  • 《铂单原子催化剂研究取得重要进展》

    • 来源专题:中国科学院文献情报先进能源知识资源中心 |领域情报网
    • 编译者:guokm
    • 发布时间:2018-06-27
    • 近日,上海应用物理所上海光源材料与能源部的司锐研究员与中国科学技术大学曾杰教授、李震宇教授合作,利用同步辐射X 射线吸收精细结构谱学技术,在铂单原子催化剂“ 构效关系” 研究方面取得重要进展,相关研究成果发表在化学类国际权威期刊《纳米通讯》(Nano Lett., 2018, 18 , 3785-3791 ) 上。 负载型单原子催化剂的特点是活性组分含量极低(<1 wt.%) 、且无完整晶体结构,常规表征手段往往不适用。X 射线吸收精细结构谱学(XAFS) 技术因其元素敏感特性,可有效的探测低含量组分的非有序配位结构。在化学制备过程中,溶液相控制合成方法可有效的将金属镍(Ni) 纳米晶上的部分Ni0 原子替换为Pt0 原子,所得Pt1/Ni 催化剂对于硝基化合物选择性加氢反应具有高活性与选择性。通过高角环形暗场相扫描透射电子显微镜(HAADF-STEM) 照片( 图A) 及其高倍数球差校正后的图像( 图B) ,可以从微区上确定Ni 纳米晶表面存在替换Ni 位点的Pt 单原子。司锐研究员利用XAFS 技术,首先从X 射线吸收近边谱图(XANES) 上分析证实了Pt 元素为0 价( 类似金属Pt) 、并无离子态Pt d + 成分存在( 图C) ;再通过扩展X 射线吸收精细结构谱图(EXAFS) 拟合确认了样品中只存在Pt-Ni 键、无Pt-Pt 键( 图D ) 。所以,Pt 是以单原子形式存在的,且每个Pt 原子均只与Ni 原子配位。上述结论对于合理计算选择性加氢反应的效率至关重要,也为Pt-Ni 金属- 金属键相互作用是催化活性物种提供了可靠的实验证据。 与 XAFS 相关的研究得到了国家自然科学基金 (21373259) 、中国科学院相关人才计划、中国科学院战略性先导纳米专项 (XDA09030102) 的共同支持,相关测试实验在上海光源 BL14W1 线站上完成。
  • 《大连化学物理研究所单原子催化剂应用于生物质转化反应研究取得新进展》

    • 来源专题:中国科学院文献情报先进能源知识资源中心 |领域情报网
    • 编译者:wukan
    • 发布时间:2018-06-07
    •   近日,我所航天催化与新材料中心的王爱琴研究员、张涛院士团队在长期从事单原子催化剂和生物质转化研究基础上,首次将高金属载量的Ni-N-C单原子催化剂应用于生物质转化反应中并取得重要进展。相关工作以通讯形式发表在《德国应用化学》(Angew. Chem. Int. Ed.)上,并被选为热点文章(Hot paper)。   生物质作为一种可再生碳资源,将其转化为多元醇、芳烃、烷烃等高附加值化学品具有重要意义。Ni基催化剂在生物质的加氢、加氢裂解和加氢脱氧等反应中已被证明具有高催化活性。然而,在生物质转化的反应介质中(强酸、高温、水热),大部分Ni基催化剂并不能够稳定存在,这主要是由于低价态Ni0/Niδ+催化活性物种在酸溶液中发生溶解、流失以及聚集长大等过程,从而导致催化剂的失活。该缺点也成为了限制Ni基催化剂应用于生物质转化反应中巨大的障碍。因此,急需发展一种新型耐酸稳定的Ni基催化剂并用于生物质加氢领域。   近来,M-N-C单原子 (M通常指Fe/Co/Ni等过渡金属) 在ORR、HER、CO2电还原等电化学反应以及有机合成中表现出优异性能。得益于过渡金属M与杂原子N之间的强配位作用,M-N-C单原子催化剂有望抵抗住酸流失和热聚集。此前,该研究团队已经合成出单原子分散的Co-N-C催化剂和Fe-N-C催化剂(J. Am. Chem. Soc., Chem. Sci.),经过酸刻蚀处理后的Co/Fe单原子在还原反应和氧化反应中表现出非常优异的稳定性。在此基础上,近日,该团队又发展了金属载量高达7.5wt%的Ni-N-C单原子催化剂,并应用于纤维素转化制备多元醇 (乙二醇和羟基丙酮)反应。对比活性炭负载的镍纳米颗粒催化剂 (Ni/AC),Ni-N-C单原子催化剂在245°C、6MPa的H2氛围、强酸和高温水热的苛刻条件下,表现出很好的耐久性,催化剂可循环7次以上且未见明显的活性降低和单原子聚集长大。通过深入表征,成功解析出Ni-N-C单原子催化剂的活性中心为(Ni-N4)┅N构型,并通过与清华大学的李隽教授合作,借助理论计算与对照实验,揭示了H2分子是通过在Ni2+(路易斯酸位)和近邻未配位的吡啶态N原子 (路易斯碱位) 组成的FLPs(受阻路易斯酸碱对)位点上以异裂方式解离活化的。   上述研究工作得到国家自然科学基金委、科技部、中国科学院战略性先导科技专项和教育部能源材料化学协同创新中心的资助。