《中国科学院:铂单原子催化剂研究取得进展》

  • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
  • 编译者: 冯瑞华
  • 发布时间:2018-06-26
  • 中国科学院上海应用物理研究所上海光源材料与能源部研究员司锐与中国科学技术大学教授曾杰、李震宇合作,利用同步辐射X射线吸收精细结构谱学技术,在铂单原子催化剂“构效关系”研究方面取得新进展,相关研究成果发表在化学类国际期刊《纳米通讯》(Nano Lett., 2018,18, 3785-3791)上。

    负载型单原子催化剂的特点是活性组分含量极低(<1 wt.%),且无完整晶体结构,常规表征手段往往不适用。X射线吸收精细结构谱学(XAFS)技术因其元素敏感特性,可有效地探测低含量组分的非有序配位结构。在化学制备过程中,溶液相控制合成方法可有效地将金属镍(Ni)纳米晶上的部分Ni0原子替换为Pt0原子,所得Pt1/Ni催化剂对于硝基化合物选择性加氢反应具有高活性与选择性。通过高角环形暗场相扫描透射电子显微镜(HAADF-STEM)照片(图A)及其高倍数球差校正后的图像(图B),可以从微区上确定Ni纳米晶表面存在替换Ni位点的Pt单原子。司锐利用XAFS技术,首先从X射线吸收近边谱图(XANES)上分析证实了Pt元素为0价(类似金属Pt)、并无离子态Ptd 成分存在(图C);再通过扩展X射线吸收精细结构谱图(EXAFS)拟合确认了样品中只存在Pt-Ni键、无Pt-Pt键(图D)。所以,Pt是以单原子形式存在的,且每个Pt原子均只与Ni原子配位。上述结论对于合理计算选择性加氢反应的效率至关重要,也为Pt-Ni金属-金属键相互作用是催化活性物种提供了可靠的实验证据。

    与XAFS相关的研究得到了国家自然科学基金(21373259)、中国科学院相关人才计划、中国科学院战略性先导纳米专项(XDA09030102)的共同支持,相关测试实验在上海光源BL14W1线站上完成。

    Pt1/Ni的HAADF-STEM照片(a)及其轮廓分析(b)、XANES谱图(c)和EXAFS谱图(d)

  • 原文来源:http://www.xincailiao.com/news/news_detail.aspx?id=204807
相关报告
  • 《铂单原子催化剂研究取得重要进展》

    • 来源专题:中国科学院文献情报先进能源知识资源中心 |领域情报网
    • 编译者:guokm
    • 发布时间:2018-06-27
    • 近日,上海应用物理所上海光源材料与能源部的司锐研究员与中国科学技术大学曾杰教授、李震宇教授合作,利用同步辐射X 射线吸收精细结构谱学技术,在铂单原子催化剂“ 构效关系” 研究方面取得重要进展,相关研究成果发表在化学类国际权威期刊《纳米通讯》(Nano Lett., 2018, 18 , 3785-3791 ) 上。 负载型单原子催化剂的特点是活性组分含量极低(<1 wt.%) 、且无完整晶体结构,常规表征手段往往不适用。X 射线吸收精细结构谱学(XAFS) 技术因其元素敏感特性,可有效的探测低含量组分的非有序配位结构。在化学制备过程中,溶液相控制合成方法可有效的将金属镍(Ni) 纳米晶上的部分Ni0 原子替换为Pt0 原子,所得Pt1/Ni 催化剂对于硝基化合物选择性加氢反应具有高活性与选择性。通过高角环形暗场相扫描透射电子显微镜(HAADF-STEM) 照片( 图A) 及其高倍数球差校正后的图像( 图B) ,可以从微区上确定Ni 纳米晶表面存在替换Ni 位点的Pt 单原子。司锐研究员利用XAFS 技术,首先从X 射线吸收近边谱图(XANES) 上分析证实了Pt 元素为0 价( 类似金属Pt) 、并无离子态Pt d + 成分存在( 图C) ;再通过扩展X 射线吸收精细结构谱图(EXAFS) 拟合确认了样品中只存在Pt-Ni 键、无Pt-Pt 键( 图D ) 。所以,Pt 是以单原子形式存在的,且每个Pt 原子均只与Ni 原子配位。上述结论对于合理计算选择性加氢反应的效率至关重要,也为Pt-Ni 金属- 金属键相互作用是催化活性物种提供了可靠的实验证据。 与 XAFS 相关的研究得到了国家自然科学基金 (21373259) 、中国科学院相关人才计划、中国科学院战略性先导纳米专项 (XDA09030102) 的共同支持,相关测试实验在上海光源 BL14W1 线站上完成。
  • 《中国科学院合肥研究院设计出直接燃料电池催化剂》

    • 来源专题:能源情报网信息监测服务平台
    • 编译者:guokm
    • 发布时间:2021-03-24
    • 近期,中国科学院合肥物质科学研究院固体物理研究所纳米材料与器件技术研究部环境与能源纳米材料中心在以有机物5-羟甲基糠醛作为燃料的燃料电池研究中取得新进展,合成了负载在炭黑上的铂与硫化镍纳米颗粒双功能催化剂(PtNiSx/CB),不仅可以催化阳极燃料5-羟甲基糠醛(HMF)氧化为2,5-呋喃二甲酸(FDCA),还能够驱动阴极氧还原反应,实现在输出能量的同时将燃料转变为更高价值的产物。相关研究成果以Sustainable 2,5-furandicarboxylic synthesis by a direct 5-hydroxymethylfurfural fuel cell based on a bifunctional PtNiSx catalyst为题,发表在Chemical Communications上。 FDCA有望在化工生产中取代对苯二甲酸合成聚合物,是一种重要的近市场化工产品,主要通过热催化、光催化、电催化等方式氧化HMF得到。其中,电化学策略可与电化学析氢反应(HER)或电催化有机氢化合成结合,产生额外的高附加值产品,并提高能量转换效率。可持续和更节能的电催化FDCA合成工艺是燃料电池研究中的热点。 燃料电池作为一种可持续的能量转换和存储技术,因其能量转换效率高、环境友好等优点得到广泛研究和发展。燃料电池技术包含两个重要的化学反应——阳极的燃料氧化反应和阴极氧还原反应(ORR),均需要利用高效且价格相对低廉的催化剂以降低反应能垒,进而提高反应动力学。 基于此,研究人员设计出氧还原与有机合成相结合的直接HMF燃料电池(DHMF-FC)形式;采用浸渍、熏硫与煅烧的策略,合成了双功能PtNiSx催化剂。研究发现,铂与硫化镍间存在界面,Pt和NiSx纳米颗粒之间密切的相互作用与界面效应使得该催化剂具有良好的电化学ORR和HMF氧化催化活性。此外,NiSx的引入有利于ORR四电子反应过程的进行,硫元素也可有效防止金属颗粒的团聚。半电池的电化学测试和ICP-AES测试结果显示,PtNiSx/CB具有优异的ORR与OER性能,电化学活性面积(79 m2 gPt-1)高于商业Pt/C(64 m2 gPt-1),且其中铂的负载量(7.60 wt%)低于商业铂碳(20 wt%)。加入HMF后的燃料电池在60℃时,开路电压为0.52 V,放电效率达2.12 mW cm-2,电流密度为6.8 mA cm-2;对放电反应电解液进行液相色谱检测,发现HMF几乎完全转化为FDCA,转化率接近98%,选择性达到100%。该研究有助于设计和发展双功能的燃料电池电催化剂。 研究工作得到国家自然科学基金、安徽省自然科学基金和中国博士后科学基金的支持。