《Nature | SARS-CoV-2对尼马替韦(nirmatrelvir)抗药性的分子机制》

  • 来源专题:战略生物资源
  • 编译者: 李康音
  • 发布时间:2023-09-18
  • 2023年9月11日,上海科技大学免疫化学研究所杨海涛教授、免化所特聘教授/清华大学教授饶子和院士团队与哥伦比亚大学何大一(David D. Ho)院士团队合作,在国际顶尖学术期刊 Nature 上发表了题为:Molecular mechanisms of SARS-CoV-2 resistance to nirmatrelvir 的研究论文,揭示了新冠病毒如何利用两种截然不同的途径对治疗药物产生耐药性的分子机制。

    研究团队曾发现,在奈玛特韦的选择压力作用下,新冠病毒可以通过突变其主蛋白酶上的多个位点获得对奈玛特韦的耐药性,但其背后的精确分子机制仍是未解之谜。利用病毒主蛋白酶的结构对突变位点进行分析发现,耐药突变E166V、F140L和S144A位于主蛋白酶底物识别口袋的S1位点,L50F突变在S2位点附近,L167F和A193P突变在S4位点,而T21I突变位于S4'位点。综合利用病毒学、生物化学以及结构生物学等多学科交叉手段对以上突变展开研究,该研究首次发现了新冠病毒可以利用两种截然不同的进化途径对奈玛特韦产生耐药性。

    为了寻求解决病毒耐药的办法,研究团队进一步探索了各种小分子抑制剂与新冠病毒主蛋白酶的结合模式,发现以前报道过的一种天然产物抑制剂与蛋白酶的结合模式与上述临床药物的结合模式截然不同,而在后续的测试中也发现上述病毒的突变体尚未对该天然产物产生耐药性。这表明为了解决当前抗新冠药物在临床使用中产生潜在耐药性问题,后续可能还需要开发针对同一靶点不同结合模式的新型抑制剂,或是针对不同靶点的抑制剂,这些发现也为今后开发新一代抗病毒药物奠定了理论基础。





    编译来源:https://mp.weixin.qq.com/s/VLsLqMYAi2ofnjNWCnx-mg

  • 原文来源:https://www.nature.com/articles/s41586-023-06609-0
相关报告
  • 《工程病毒可以抗药性》

    • 来源专题:生物安全网络监测与评估
    • 编译者:yanyf@mail.las.ac.cn
    • 发布时间:2019-10-08
    • 在与抗生素抗药性的斗争中,许多科学家一直在尝试部署称为噬菌体的天然病毒,这种病毒可以感染并杀死细菌。 噬菌体通过与抗生素不同的机制杀死细菌,并且它们可以靶向特定菌株,使其成为潜在克服多药耐药性的诱人选择。然而,快速发现和优化定义明确的噬菌体以针对细菌靶标是具有挑战性的。 在一项新的研究中,麻省理工学院的生物学工程师表明,他们可以通过对与宿主细胞结合的病毒蛋白进行突变,从而对噬菌体进行快速编程,以杀死不同的大肠杆菌。研究人员发现,这些工程化的噬菌体也不太可能引起细菌的抗药性。 麻省理工学院电气工程,计算机科学和生物工程学副教授蒂莫西·卢说:“正如我们现在越来越多地在新闻中看到的那样,细菌的抵抗力正在继续发展,并且对公共健康问题日益严重。” “相比于抗生素,噬菌体是杀死细菌的一种非常不同的方式,它是对抗生素的补充,而不是试图替代它们。” 研究人员创造了几种工程菌噬菌体,它们可以杀死实验室中生长的大肠杆菌。一种新产生的噬菌体还能够消除两种对小鼠皮肤感染的天然噬菌体具有抗性的大肠杆菌菌株。 Lu是这项研究的资深作者,该研究发表在10月3日的Cell中。麻省理工学院的博士后Kevin Yehl和前博士后Sebastien Lemire是该论文的主要作者。 工程病毒 美国食品和药物管理局已经批准了一些用于杀死食品中有害细菌的噬菌体,但是由于发现天然针对噬菌体的噬菌体可能是一个困难且耗时的过程,因此并未被广泛用于治疗感染。 为了使这种疗法更容易开发,Lu的实验室一直在研究工程化的病毒“支架”,这些支架可以轻松地重新用于针对不同的细菌菌株或不同的耐药机制。 卢说:“我们认为噬菌体是杀死和降低复杂生态系统中细菌水平的一个很好的工具,但是有针对性。” 2015年,研究人员使用了T7家族的噬菌体,该噬菌体自然杀死了大肠杆菌,并表明他们可以通过交换编码尾巴纤维的不同基因来将其编程为靶向其他细菌,该基因被噬菌体锁在其上。宿主细胞表面的受体。 尽管这种方法行之有效,但研究人员希望找到一种方法来加快针对特定类型细菌的噬菌体定制过程。在他们的新研究中,他们提出了一种策略,可以快速创建和测试更多数量的尾纤维。 通过先前对尾巴纤维结构的研究,研究人员知道该蛋白质由称为β折叠的节段组成,这些节段通过环连接。他们决定尝试仅系统突变形成环的氨基酸,同时保留β折叠结构。 Yehl说:“我们确定了我们认为对蛋白质结构影响最小的区域,但能够改变其与细菌的结合相互作用。” 他们创建了具有约10,000,000种不同尾纤维的噬菌体,并针对几种对非工程菌具有抗性的大肠杆菌进行了测试。大肠杆菌对噬菌体具有抗性的一种方法是突变“ LPS”受体,使其缩短或缺失,但是麻省理工学院的研究小组发现,他们的某些工程噬菌体甚至可以杀死具有LPS突变或缺失的大肠杆菌菌株。受体。 其他目标 Lu和Yehl现在计划将这种方法用于针对大肠杆菌使用的其他抗药性机制,他们还希望开发能够杀死其他类型有害细菌的噬菌体。 Yehl说:“这仅仅是开始,因为还有许多其他的病毒支架和细菌可以靶向。”研究人员还对使用噬菌体作为针对生活在人类肠道内并引起健康问题的特定细菌菌株的工具感兴趣。 卢说:“能够选择性地击中那些非有益菌株,可以给我们在人类临床结果方面带来很多好处。” 该研究由美国国防部减少威胁机构,美国国立卫生研究院,美国陆军研究实验室/陆军研究办公室通过麻省理工学院的士兵纳米技术研究所以及美国国家癌症研究所的科赫研究所资助(核心)资助。 ——文章发布于2019年10月3日
  • 《Nature:发现最有效的SARS-CoV-2病毒中和性抗体!》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:hujm
    • 发布时间:2020-07-28
    • 哥伦比亚大学欧文医学中心的研究人员从几名COVID-19患者身上分离出了迄今为止最有效的SARS-CoV-2病毒中和性抗体。 这些抗体可以由制药公司大量生产,用于治疗患者,特别是在感染的早期,并预防感染--特别是老年人。 "我们现在有一系列相对于此前发现的其他抗体更有效、更多样化的中和性抗体,我们已经准备好开发这些抗体用于治疗。"哥伦比亚大学瓦格洛斯内科和外科医学院医学教授、艾伦戴蒙德艾滋病研究中心的科学主任David Ho博士说道。 研究人员已经证实,他们纯化的强中和抗体对仓鼠的SARS-CoV-2感染提供了显着的保护,他们计划在其他动物和人身上进行进一步的研究。研究结果近日发表在《自然》杂志上。 为什么要寻找中和抗体 人体对感染的主要反应之一是产生抗体--一种与入侵的病原体结合以中和它并标记其被免疫系统细胞摧毁的蛋白质。 尽管针对COVID-19的一些正在开发的药物和疫苗正在进行临床试验,但它们可能要等几个月才能准备好。在此期间,COVID-19患者产生的SARS-CoV-2中和抗体可用于治疗其他患者,甚至预防接触病毒的人感染。用于治疗的抗体的开发和批准通常比传统药物需要更短的时间。 这种方法类似于使用COVID-19患者的恢复期血清,但可能更有效。恢复期血清含有多种抗体,但由于每个病人的免疫反应不同,用于治疗一个病人的富含抗体的血浆可能与用于治疗另一个病人的血浆有很大差异,具有不同浓度和强度的中和抗体。 病情加重的病人产生更强的抗体 当SARS-CoV-2在年初出现并导致一场大流行时,Ho迅速将他的艾滋病毒/艾滋病实验室的重点转移到研究这种新病毒上。Ho说:"我的大多数团队成员基本上从3月初开始就7天24小时不间断地工作。" 研究人员很容易获得在纽约市哥伦比亚大学欧文医学中心接受治疗的中度和重度疾病患者的血液样本。纽约市是今年早些时候疫情的中心。"我们有大量的临床材料,这让我们能够选择最好的病例来分离这些抗体。" Ho的研究小组发现,尽管许多感染SARS-CoV-2的患者产生大量抗体,但这些抗体的质量各不相同。在他们研究的患者中,那些患有需要机械通气的严重疾病的患者产生的中和抗体最多。 "我们认为,病情较重的患者感染病毒的时间更长,从而使他们的免疫系统产生更强的反应,"Ho说。"这与我们从艾滋病的经验中学到的类似。" 抗体的鸡尾酒 大多数抗SARS-CoV-2抗体会与病毒表面的刺突糖蛋白结合,刺突糖蛋白是赋予病毒冠状结构的特征。一些最有效的抗体定向于受体结合区域(病毒与人体细胞结合的区域),但其他抗体定向于刺突蛋白的N端区域。 该研究小组发现了比以前更多样化的抗体,包括以前没有报道过的新的、独特的抗体。 这些发现显示了病毒刺突蛋白上的哪些位点是最脆弱的,使用针对刺突蛋白不同位点的不同抗体混合物将有助于防止病毒对治疗产生耐药性。 对疫苗的影响 "我们发现,免疫系统产生这些强大的抗体并不难。这是疫苗开发的好兆头。能够产生强中和性抗体的疫苗应该能够对病毒提供强有力的保护。" 即使在疫苗可用后,抗体也可能有用。例如,疫苗可能在老年人身上不起作用,在这种情况下,抗体可能在保护老年人方面发挥关键作用。 对免疫的影响 这项研究表明,严重疾病患者更有可能产生持久的抗体反应,但需要做更多的研究来回答COVID-19免疫将持续多久的关键问题。 接下来做什么 研究人员目前正在设计实验,在其他动物身上测试这种策略,并最终在人类身上进行测试。 如果动物实验的结果也适用于人类,那么这种纯的、高度中和性的抗体可以用于COVID-19患者,帮助他们清除病毒。 警告 尽管这些发现为开发疫苗和抗病毒疗法的研究人员提供了巨大的信息,但这些发现只是早期临床前结果,而且这些抗体还没有准备好用于人体。