《研究人员确定了控制CRISPR系统的分子》

  • 来源专题:人类遗传资源和特殊生物资源流失
  • 编译者: yanyf@mail.las.ac.cn
  • 发布时间:2019-05-05
  • 科学家已经确定了第一种能够抑制和调节CRISPR系统的化合物,这些化合物最终可以使CRISPR基因编辑技术更加精确,高效和安全。为了鉴定这些化合物,研究人员开发了一个新平台,用于快速发现抑制CRISPR酶的小分子。

    有时被称为“抗CRISPR”,这样的分子允许研究人员微调CRISPR基因编辑。这些化合物可以防止CRISPR酶无意中影响其他基因 - 具有所谓的“脱靶效应” - 并使实验室和诊所的精确度更高。

    由Broad研究所和布莱根妇女医院的研究人员领导的这项工作出现在Cell。

    “精确控制和对策是任何强大技术的核心,”资深作者Amit Choudhary说。 “考虑一下我们能够利用诱导手术麻醉的药物,以及适当的控制如何将它们变成非常有用的工具。新兴的CRISPR技术已经开发用于基因治疗和生物技术,同样需要跨多个维度进行控制。“

    Choudhary是Broad研究所的副会员,Brigham和妇女医院的副生物学家,以及哈佛医学院的医学助理教授。

    FINE-TUNING CRISPR

    随着CRISPR技术被开发用于治疗人类疾病,微调CRISPR作用的能力将有助于确保酶在体内其他地方不会产生负面影响。这些抑制剂还可以加速基础生物学研究,为科学家提供一种新的精确工具,可以快速,大规模地回答实验问题。

    据研究人员称,CRISPR抑制剂还有助于在实验室环境中控制基因驱动。基于CRISPR的基因驱动是一种分子技术,可以保证生物体将工程基因传递给其所有后代。这个过程导致改变的基因在群体中传播得比自然可能的快得多。可以应用抑制CRISPR酶的分子来抑制这种结果,从而进一步研究基因驱动技术。

    与病毒中发现的CRISPR系统的基于蛋白质的抑制剂相比,新鉴定的分子很小且易于逆转,并且更有效地进入细胞。 Choudhary说:“我们正在为化学领域的一小块区域打包。”

    抑制CAS酶

    为了帮助控制CRISPR的活性,Choudhary及其同事专注于这些酶如何最初识别其基因组靶标。研究人员开发了一系列新的生物化学和细胞测试来测量CRISPR酶与其靶标之间的相互作用,寻找可能干扰这一重要第一步的分子。

    为了证明筛选平台的有效性,该团队定制了该技术,以寻找化脓性链球菌(Streptococcus pyogenes)细菌中Cas9酶的抑制剂,这是在CRISPR编辑中最常用的Cas9酶。他们筛选了大约15,000种化合物,以确定Cas9的一系列潜在抑制剂;最佳候选人名为BRD0539。这些分子成功地抑制了人类细胞中天然和工程形式的Cas9。此外,研究人员可以改变其水平以微调抑制程度,或者简单地去除它们,从而重新启用CRISPR活性。

    使用相同的实验装置,研究人员已经在识别和开发下一代这些分子。该团队的目标是创建一个可以抑制任何CRISPR系统的化合物工具箱。

    Choudhary说:“我们拥有这个平台,我们已经证明了它在概念验证方面的有效性。” “现在我们正在使用它来寻找CRISPR系统的下一个抑制剂。基于化学的方法在基于CRISPR的基因组编辑中的应用才刚刚开始。“

    这项工作部分得到了Burroughs Wellcome Fund,DARPA(Brdi N66001-17-2-4055,HR0011-17-2-0049),NIH(R21AI126239,RM1HG009490,R35 GM118062)和陆军研究办公室(W911NF1610586)的支持。 。

    Broad Institute已提交专利申请,包括此处所述的工作。

相关报告
  • 《研究开发基因驱动控制工具》

    • 来源专题:生物科技领域知识集成服务
    • 编译者:陈方
    • 发布时间:2020-11-16
    • 2020年9月18日Molecular Cell报道,美国加州大学圣地亚哥分校的研究者开发了两种新的基因驱动控制工具——e-CHACR和ERACR,可以针对基因驱动释放在野生环境后停止或消除其作用,目前已经在基因和分子水平上测试成功。该研究有助于解决基因驱动释放到野生环境中带来的生物安全的问题。 过去十年,科学家设计出了一系列控制基因遗传平衡的新工具。基于CRISPR技术的基因驱动器有望从实验室转移到野外,生物体被工程化以抑制毁灭性疾病,例如蚊媒疟疾、登革热等。但人们对将基因驱动生物释放到野生种群中的安全性提出了质疑。 此次,研究者基于果蝇开发了两个新的基因驱动控制工具,第一个被称为e-CHACR(erasing Constructs Hitchhiking on the Autocatalytic Chain Reaction),它可以放在基因组中的任何地方,利用基因驱动器上携带的Cas9酶使Cas9基因突变和失活,e-CHACR还能自我复制,继续“追逐”驱动器元件,直到其功能完全丧失;第二种中和系统称为ERACR(Element Reversing the Autocatalytic Chain Reaction),它被设计插入基因驱动器的附近,使用基因驱动器中的Cas9酶攻击Cas9的任一侧,将其切除,ERACR再复制自身并完全替换基因驱动器。 研究人员在分子水平上详细分析了e-CHACR和ERACR以及所得的DNA序列。ERACR和e-CHACR提供了阻止基因驱动扩散的方法,它们可能将工程化的DNA序列还原为更接近天然序列的状态。由于ERACR和e-CHACR不具有自己的Cas9基因,因此其作用只局限于基因驱动个体,不会编辑野生种群。研究者也表示,这些技术并不完美,研究者将继续优化使其成为更加强大的基因驱动控制工具。
  • 《研究人员揭开了控制细胞大小的机制》

    • 来源专题:生物安全网络监测与评估
    • 编译者:yanyf@mail.las.ac.cn
    • 发布时间:2019-05-27
    • 加州大学圣地亚哥分校的一个多学科团队与细菌合作,为科学中一个长期存在的问题提供了新的见解:控制细胞大小的潜在机制是什么? 大约五年前,由加州大学圣地亚哥分校的生物物理学家Suckjoon Jun领导的一个小组发现,细胞大小由一个称为“加法器”的基本过程控制,这个过程指导细胞从出生到固定的增加大小。师。然而,关于这个过程背后的机制仍然存在着神秘感,导致了科学的竞争。 他们在5月16日出版的“当代生物学”杂志上发表了他们的着作,主要作者方伟斯和纪尧姆·勒特雷特及其同事描述了加法器的内部运作。他们发现这个过程,也被称为“大小稳态”,归结为两个必需的组成部分:用于细胞分裂的特定生物成分的平衡合成,包括某些蛋白质;以及当足够数量的此类蛋白质积累时启动加法器过程的临界阈值。科学家说,加法器过程遵循这两个要求。 “这是一种非常强大的机制,因为每个细胞都能保证达到其目标细胞大小,无论它是大的还是小的,”Jun说,他是生物科学部分子生物学和物理科学系的副教授。物理学。 “最重要的是,我们发现加法器完全由参与细胞分裂的一些关键蛋白决定。” 虽然研究人员发现了细菌大肠杆菌(E. coli)和枯草芽孢杆菌(枯草芽孢杆菌)的机制,但他们认为这一过程在许多生命形式中都是一般的。 Jun表示,由生物学家,物理学家和工程师组成的研究小组在多年尝试一系列调查方法和实验方法后破解了加法器案例。 “细胞大小稳态是一个基本的生物学问题,据我们所知,这是我们第一次最终理解它的机械起源,”Jun说,“我们无法用纯物理学或纯生物学来解决这个问题。多学科方法。“ 研究小组现在正在调查加法器的定量和机制框架是否适用于其他模型,如酵母和癌细胞。 除了Si,Le Treut和Jun之外,该论文的共同作者还包括加州大学圣地亚哥分校物理系的John Sauls;圣路易斯华盛顿大学的Stephen Vadia和Petra Anne Levin。 该研究的资金由Paul G. Allen家庭基金会,皮尤慈善信托基金,国家科学基金会职业资助(MCB-1253843)和美国国立卫生研究院(R01 GM118565-01和R35-400 GM127331)提供。 ——文章发布于2019年5月17日