《Nature | 胆固醇和细胞内促味剂激活苦味受体》

  • 来源专题:战略生物资源
  • 编译者: 李康音
  • 发布时间:2024-04-14
  • 2024年4月10日,北卡罗来纳大学教堂山分校的研究人员在Nature上发表了题为Bitter taste receptor activation by cholesterol and an intracellular tastant的文章,首次揭示出了苦味受体的蛋白结构细节,除此之外他们还发现了苦味分子是如何与TAS2R结合并且激活受体的。

    在TAS2R家族中,TAS2R14是比较受关注的成员之一,因为光TAS2R14自己就能识别超过100种苦味化合物。新研究中,作者首先检测了不同组织中TAS2R14的表达量,他们发现除了舌头,TAS2R14还广泛地表达于小脑、皮肤、小肠和胸腺组织,尤其是小脑组织的TAS2R14表达水平要比舌头高出100倍,在各类组织中处于最高水平。在这些部位的TAS2R14不会传递苦味信息,而是参与其他的细胞信号通路。

    随后,研究团队借助生物化学和冷冻电镜手段展现了TAS2R14的蛋白结构,并分析了苦味分子是如何与其互相作用的。他们看到,当苦味分子接触到TAS2R14之后会嵌入到苦味受体的一个独特的变构位点上。受此影响,TAS2R14会改变它的形状并激活偶联的G蛋白,这种激活信号会引起下游一系列的生化反应,并将信号传递到微小的神经纤维上。随后激活信号会随着面部神经一路传递到大脑的味觉皮层中,大脑此时接收并开始处理苦味信息,因此我们可以马上感觉到口腔中的苦味。

    作者指出,从味蕾细胞到味觉皮层,这种信息的传递几乎是瞬时发生的,这也是为何我们在尝到不喜欢的苦味食物时马上就会吐出来。除了外源性的苦味分子,作者还发现TAS2R14同样可以与内源性的分子结合,像前文提到的胆固醇就能结合到TAS2R14的正构位点上,与苦味分子结合的变构位点不同,正构位点通常都是与内源分子结合,并引发下游的生物学效应。分子动力学实验显示,胆固醇与TAS2R14结合后,会使苦味受体处于半活性状态,这样能更容易被苦味分子所激活。

    除了胆固醇,由肝脏分泌的胆汁酸同样可以与TAS2R14结合,胆汁酸与胆固醇有着类似的结构,它也能结合到TAS2R14的正构位点中。不过,这两种内源性分子与TAS2R14后会产生哪些下游效应,还需要未来更多实验来揭示。胆汁酸和胆固醇在脂质代谢中有着重要作用,因此作者推测TAS2R14也参与了这些代谢过程,并与一些代谢障碍疾病,例如肥胖、糖尿病有着联系。而基于苦味受体的这些新发现,科学家能更好地研发出靶向调控G蛋白偶联受体的药物,帮助精准治疗相关疾病。

相关报告
  • 《Nature | 揭示苦味受体TAS2R14独特的配体识别机制》

    • 编译者:李康音
    • 发布时间:2024-05-26
    • 2024年5月22日,上海科技大学iHuman研究所、生命科学与技术学院华甜和刘志杰团队,联合山东大学基础医学院孙金鹏团队及上海交通大学医学院第九人民医院杨驰团队在Nature上发表了题为Bitter taste TAS2R14 activation by intracellular tastants and cholesterol 的最新研究成果,揭示了植物来源苦味物质、上市药物分子及胆固醇对苦味受体TAS2R14的独特调控机制。 联合研究团队利用单颗粒冷冻电镜技术,获得了人源苦味受体TAS2R14分别与植物来源马兜铃酸A (Aristolochic acid, AA) ,药物分子氟芬那酸 (flufenamic acid, FFA) 和 compound 28.1结合,以及与不同G蛋白偶联状态下的高分辨率结构。发现TAS2R14中至少存在三个可被不同配体调控的位点,其中AA,FFA和compound 28.1意外地结合在受体胞内跨膜区的口袋2 (pocket-2)中, AA也可以结合在口袋3(pocket-3)中,而胆固醇分子却反客为主地结合在GPCRs经典的正构配体结合口袋内(pocket-1)。此外,受体的第六个跨膜螺旋TM6的胞内端通过自身结构在无序-有序间的构象变化精妙协调配体识别以及不同G蛋白与受体的结合。这些现象颠覆了人们对GPCR配体识别的传统认知,揭示了苦味受体全新的配体识别和受体激活机制。 通过进一步的细胞水平功能实验和分子动力学模拟,该研究验证了结合在非正构位点的苦味分子仍是激活TAS2R14的主要动力。在口袋2中,AA,FFA和compound 28.1均与受体激活密切相关的氨基酸结构域形成重要的相互作用,而胆固醇能够稳定结合并独立激活受体。此外通过一系列突变及胆固醇敲除等实验,揭示了三个结合口袋在配体识别及受体激活上的分工和协作关系。 该研究克服诸多困难,解析了苦味受体TAS2R14与野生型下游信号转导蛋白Gustducin和Gi1三聚体的复合物三维结构,揭示了不同G蛋白与TAS2R14的结合模式,为进一步研究苦味受体的下游不同信号转导通路所介导的生理功能提供了非常重要的理论基础。除了自身的独特性质,TAS2R14还具有和团队之前报道的苦味受体TAS2R46中一些类似的结构特征,例如在正构口袋中的保守残基W3.32,苦味受体激活相关的保守结构域,以及G蛋白与受体的预结合模式等。 以上研究揭示了诸多苦味受体结构与功能的独特性质,极大拓展了人们对GPCR配体识别以及受体激活的认知,破解了TAS2R14识别结构多样的苦味物质的分子密码以及胆固醇直接调控苦味受体的全新分子机制。这些成果还加深了对苦味受体结构和功能的理解,并为设计靶向TAS2R14的药物候选分子提供了全新的视角。
  • 《Nature | ips细胞衍生的小胶质细胞通过胆固醇转移促进脑类器官成熟》

    • 来源专题:战略生物资源
    • 编译者:李康音
    • 发布时间:2023-11-06
    • 本文内容转载自“CNS推送BioMed”微信公众号。原文链接: https://mp.weixin.qq.com/s/7yHvn3XxL5sj8VyLZAHH6w 2023年11月1日,新加坡国立大学等机构的研究人员在Nature发表题为iPS-cell-derived microglia promote brain organoid maturation via cholesterol transfer的文章。 小胶质细胞是特化的脑内巨噬细胞,由定植于胚胎大脑的原始巨噬细胞产生。小胶质细胞对大脑发育的多个方面都有贡献,但由于对相关组织的接触有限,它们在早期人类大脑中的确切作用仍然知之甚少。人类诱导多能干细胞产生脑类器官概括了人类胚胎脑发育的一些关键特征。然而,目前的方法并没有纳入小胶质细胞或解决它们在类器官成熟中的作用。 该研究通过将脑类器官与由相同的人类诱导多能干细胞(iMac)产生的原始样巨噬细胞共培养,生成了足够小胶质细胞的脑类器官。在类器官共培养中,iMac分化为具有小胶质样表型和功能的细胞(immicro),并调节神经元祖细胞(NPC)的分化,限制NPC的增殖并促进轴突发生。从机制上说,immicro含有高水平的PLIN2(+)脂滴,这些脂滴输出胆固醇及其酯,这些胆固醇和酯被类器官中的npc吸收。研究人员还在小鼠和人胚胎脑中检测到了装载PLIN2(+)脂滴的小胶质细胞。总的来说,该研究通过结合小胶质细胞大大推进了目前的人类大脑类器官方法,正如发现的小胶质细胞和非神经细胞之间脂质介导的串扰的关键途径所示,从而改善了神经发生。