《研究人员打造新生物太阳能电池技术阴雨天也可用》

  • 来源专题:中国科学院文献情报先进能源知识资源中心 |领域情报网
  • 编译者: guokm
  • 发布时间:2018-07-31
  • 英属哥伦比亚大学的研究人员已经发现了一种新的廉价方式,借助细菌打造的太阳能电池将阳光转变成能量。他们打造的这种太阳能电池产生的电流比之前记录的任何类似装置都要强,而且无论在强光和弱光环境下都同样有效。

      这一革命性的太阳能新技术能够进一步推广到更多的地方,比如说英属哥伦比亚和北欧经常阴天的部分地区。经过进一步的研发与完善,这些生物太阳能电池有可能和传统太阳能电池板板中使用的人造电池同样高效。

      项目负责人,英属哥伦比亚大学化学和生物工程学部门的教授Vikramaditya Yadav称:“我们为英属哥伦比亚研发的这种独特解决方案是让太阳能技术更加经济的重要一步。”太阳能电池是由太阳能板模块构成的,它们能够将阳光转变成为电流。

      之前研究人员也曾打造生物太阳能电池,但他们都致力于提取出细菌用于光合作用的天然染料。那是一个成本昂贵而且复杂的过程,不仅需要使用有毒的溶剂,而且有可能导致染料降解。英属哥伦比亚大学的研究人员提出的解决方案是保留细菌中的这些生物染料。

      他们对大肠杆菌进行基因编辑来产生大量的番茄红素,这种染料让番茄获得了红橙色色彩,而这种染料将光转变成能量的效率特别高。研究人员为大肠杆菌包裹了一层矿物质来充当半导体,并且将其放置到一种玻璃表面上。

      研究人员借助镀膜玻璃充当太阳能电池的一个电极,他们的这个装置获得了每平方毫米0.686毫安的电流密度,比野外的其它生物太阳能电池提高了0.362毫安。Yadav称:“我们创下了生物太阳能电池最高电流密度的记录。我们研发的这些混合材料制造成本低廉而且具有可持续性,而且经过足够的优化之后,它的转化效率完全能够比得上传统的太阳能电池。”

      这一技术节省的成本难以估计,但是Yadav认为这一过程将染料提取的成本降低了十分之一。Yadav称,这项研究的重点在于我们发现了一个不会杀死细菌的过程,因此它们能够无限期的制造生物染料。这种生物太阳能电池技术也拥有着其它的潜在应用,比如说在采矿业、深海探索和其它低光照环境中等。

相关报告
  • 《硅藻—太阳能电池技术突破的新途径》

    • 来源专题:集成电路
    • 编译者:shenxiang
    • 发布时间:2019-08-01
    • 硅藻,一种繁衍十分迅速的硅藻类植物,它们的无定型二氧化硅壳体以及独特的立体结构,可以使光在细胞内进行充分的光合作用。在人类发明硅基太阳能电池之前,自然界中的硅藻早已开始利用二氧化硅来收集太阳能。近年来,众多国内外研究人员就希望利用硅藻的光学特性来推动太阳能技术取得突破。 硅藻特殊结构发挥重要作用 藻类有200个门,10万多个种,大多数生活在海水中,能利用太阳能进行光合作用。藻类是世界上光能利用最成功、光能利用率最高的有机体,其能较少的反射太阳光,并通过网格毛孔捕获太阳能。 藻类高效利用阳光的最大秘密在于其外壳,其中单细胞的硅藻外壳是最佳模型。硅藻外壳是由结构极为复杂精密的二氧化硅组成10~50nm 的六边形微孔排列形成丝网状结构,复杂的结构能使射进的光线无法逃逸,这种纹饰繁密的藻壳不仅增强了硅藻的硬度和强度,使其具有能悬浮起来的机械性,而且提高了其运输营养物质和吸附、附着的生理功能,且阻止了有害物质进入,增强了光吸收率。 研究人员在很多具有分级多孔结构的生物材料中发现了天然的光子晶体效应,硅藻的特殊结构让它成为一种良好的光子晶体,能够大大提升光捕获效率,这种特性让硅藻在太阳能电池中发挥了重要的作用。 硅藻天然材料降低所需成本 硅藻这种微小生物对有机太阳能电池(相较于传统太阳能技术,这种技术成本更低)的设计有着独特的价值。因为设计这些电池的一个挑战是,它们需要非常薄的活性层(只有100到300纳米),而这限制了它们将光能转化为电能的效率。 解决这个问题的方案便是嵌入能够吸收与分散光的纳米结构来提高吸收水平,但这对于大规模生产来说太贵了。而这恰恰就是硅藻能够起作用的地方。经过数十亿年的适应性进化,它们已经尽可能优化了吸收光的能力。而且它们是自然界中最常见的浮游植物,这就意味着它们很便宜。硅藻在世界各地的海洋和淡水中非常普遍,因而成本非常低,所以它们成为改善光伏发电的理想选择。 硅藻有效提高能量转换效率 藻类外壳利用阳光的构筑是未来太阳能电池原材料和模型构筑的最佳供体。有机光伏太阳能电池具有由有机聚合物制成的活性层,这意味着它们比常规太阳能电池便宜,但它们的转换效率不太高,主要因为其有源层非常薄,通常需要小于300纳米,因此这限制了转换效率。 而利用硅藻的光学特性,将硅藻加入到染料敏化太阳能电池(是以低成本的纳米二氧化钛和光敏染料为主要原料,模拟自然界中植物利用太阳能进行光合作用,将太阳能转化为电能)的二氧化钛薄层后,能量转换效率是原转换效率的1.3-1.4倍(而把硅藻壳体加入到二氧化钛中烧结形成电池阳极,增加了光捕获和在电池中的散射性能,传统二氧化钛覆膜3遍的转换效率为3.8%,加入了硅藻壳体的二氧化钛转换效率可以达到5.26%)。 硅藻对于人类来说就是一个未开发的宝藏,除了在太阳能光伏材料上能有效的突破目前的能量转换效率,而且在其他领域还有着相同重要的应用。例如硅藻细胞代谢产生的多糖、蛋白质、色素、油脂等,使其在食品、医药、基因工程、液体燃料等多个领域都有极大的开发前景。 通过硅藻壳生产的微纳米二氧化硅是自然界独一无二、纯度极高的生物无机材料,也是最佳微纳生物平台材料,当然硅藻在养殖过程中也能吸收二氧化碳释放大量氧气,对环境有着巨大的贡献。
  • 《Halocell 与澳大利亚研究人员合作开发无铅太阳能电池技术》

    • 来源专题:能源情报网监测服务平台
    • 编译者:郭楷模
    • 发布时间:2025-05-15
    • 昆士兰大学的研究人员利用锡基钙钛矿太阳能电池实现了 16.65% 的世界纪录认证效率后,宣布他们将与澳大利亚电池制造商 Halocell Energy 合作,推动该技术的商业化。 由澳大利亚生物工程和纳米技术研究所 (AIBN) 的陈鹏领导的研究团队开发了一种2D/3D 锡卤化物钙钛矿光伏电池,为下一代太阳能电池中通常使用的铅提供了无毒替代品。 在标准照明条件下进行测试,锡卤化物器件的峰值效率达到 17.13%,认证效率达到 16.65%,同时在连续一个太阳照射下也能稳定运行超过 1,500 小时。 该研究团队目前正与澳大利亚钙钛矿太阳能电池制造商Halocell合作,推动该技术走出实验室,加速锡基钙钛矿太阳能电池板的商业化生产。 “我们很高兴能与 Halocell 合作,将我们的研究推进到新的阶段,使我们的环保太阳能电池技术更接近实际应用,”陈说道。“我们的原型已经在实验室中展现出强劲的成果,现在的下一步是验证它们在这些受控条件之外的性能。” 陈表示,研究团队已通过联邦政府的经济加速器点燃计划获得了近 20 万澳元(13 万美元)的资金支持,这将使其能够从实验室原型走向实际应用。 他说:“在接下来的 12 个月里,我们将在实验室外、室内和室外环境中测试一系列应用程序。” Halocell 首席执行官 Paul Moonie 表示,此次合作标志着我们朝着推出下一代可持续太阳能技术迈出了重要一步。 “这项计划将有助于打造第一代无铅钙钛矿太阳能电池板,从而开启室内太阳能电池、便携式电子产品和智能家居应用领域价值数百万美元的市场,”他说道。“我们很高兴能够参与这个项目,并助力其快速从前沿研究向实际应用的转变。” 市场研究公司 Navistrat Analytics 发布的数据显示,全球钙钛矿太阳能电池市场规模到 2024 年将达到近 2.487 亿美元,预测到 2032 年的复合年增长率 (CAGR) 将达到 71.5%。 陈教授表示:“市场对既经济高效又环保的太阳能电池的需求巨大。通过用轻质锡替代重金属铅,我们可以提供同等效率且可持续的太阳能技术。”