《上海交通大学在激光增材制造领域取得重大进展》

  • 来源专题:光电情报网信息监测服务平台
  • 编译者: husisi
  • 发布时间:2024-07-31
  • 上海交通大学材料科学与工程学院董安平研究员、熊良华副教授、杜大帆副教授、何林助理教授课题组联合北京中国科学院高能物理研究所张兵兵副研究员团队,在激光增材制造同步辐射原位研究领域取得了重要进展,相关研究成果以“Dynamics of pore formation and evolution during multi-layer directed energy deposition additive manufacturing via in-situ synchrotron X-ray imaging: A case study on high-entropy Cantor alloy”为题发表在International Journal of Machine Tools and Manufacture上,这是国内首篇仅利用国内同步辐射资源发表的原位增材高水平文章。

    该工作利用同步辐射高能X射线快速成像技术,对典型高熵Cantor合金在传导模式下的多层定向能量沉积(DED)过程进行了原位研究,揭示了三种新的孔洞形成机制,并验证了三种已知的孔洞生成机制;与此同时,基于熔池尺度流场高时空分辨表征,提出了一种调控马兰戈尼流实现孔隙消除新机制。这些发现为高熵合金的增材制造提供了关键的实验数据,有助于开发精准的计算模型和深入理解熔池微观尺度下的孔隙控制策略。上海交通大学材料科学与工程学院博士生张书雅为论文第一作者,上海交通大学材料科学与工程学院孙宝德教授、董安平研究员、熊良华副教授、中国科学院高能物理研究所张兵兵副研究员为论文共同通讯作者,上海交通大学为论文第一完成单位。

    激光定向能量沉积(Laser Directed Energy Deposition, LDED)增材制造技术快速实现三维复杂几何形状和大尺寸组件的高质量制造,并且能够制备微观结构可调的新型合金和功能梯度合金,在航空航天、生物医学和核能领域具有重要应用。然而,与传统的铸造和焊接工艺相比,3D打印产品通常表现出更高的孔隙率和更大的孔隙尺寸,难以保障其激光打印一致性和稳定性,严重影响了零件的力学和服役性能。因此,通过优化工艺过程以减少孔隙,对于打印高熵合金等新型金属至关重要。然而,目前对于多层DED过程在传导模式下孔洞形成机制的系统性分析仍然有限;熔池内部形成的孔洞如何随熔流演变并相互作用?这些基础科学问题对于减少甚至消除孔隙至关重要,而多物理模拟熔流对孔隙往往依赖高精度实验数据,当前在多道次DED原位实验研究尚未报道。

    针对上述问题和挑战,研究人员利用同步辐射高能X射线快速成像技术,高时空分辨穿透高温金属熔体,实时观察到高动态微尺度下熔池和气孔的动态演变过程,原位研究了传导模式下多层DED过程中多种合金体系(从铝基、钛基、镍基合金到高熵合金)中的孔洞形成及演化行为,阐明了熔池内六种孔洞生成机制和三种孔洞演化机制。

    研究还发现,典型Cantor高熵合金中存在独特的逆Marangoni对流现象,有助于延长孔洞的生存时间。在熔池循环区,孔洞沉降至激光相互作用区相邻位置的熔池底部,随后被推至熔池尾部;在接触到凝固前沿之前向上移动,并重新进入熔池内部循环。长寿命孔洞通常会在熔池激光相互作用区和循环区相邻位置合并,容易向高温区域移动,在热毛细力和浮力主导下经由熔池表面逃逸。这些发现对高熵合金等新合金体系DED工艺参数优化、开发可靠的高保真计算模型以及从熔池尺度调控缺陷等具有理论指导意义。

    图1 同步辐射原位研究激光定向能量沉积增材制造过程,从熔池尺度高精度高时空分辨揭示内部孔洞形成及演化新机制

    图2 同步辐射快速成像原位研究DED过程。(a)利用高能快速X射线成像技术实时监测粉末输送示意图;(b)同步辐射线站原位表征装置图

    图3 同步辐射快速成像高时空分辨表征熔池形貌,定量化数据可以标定和输入高保真模型

    图4 Cantor合金多道次熔覆后熔道形貌,可以看出激光能量密度严重影响多道次熔道内部缺陷生成和熔池表面起伏以及凝固后成形质量

    图5 同步辐射原位表征数据定量化分析熔池内部孔洞的捕获和消除行为

相关报告
  • 《增材制造》

    • 来源专题:数控机床与工业机器人
    • 编译者:杨芳
    • 发布时间:2015-05-15
    • 增材制造 基于3D打印技术的摇滚演唱会 上周,黑色安息日摇滚乐队在法兰克福的表演带给德国摇滚歌手极大震撼,就在同一时间,另一支乐队也在法兰克福会展中心的一个大型会堂里准备自己的演出设备。实际上,这支乐队在此之前还没有接触过自己要演奏的乐器;这是因为他们所使用的乐器是在演出前一天才用3D打印机打印出来。 当时,欧洲模具展也在法兰克福会展中心举行,该展会是一个全球性展会,为来自世界各地的模具制造、机床制造和准备开设工厂的工程师提供了一个交流平台。欧盟模具展已经举办了20年,不仅展出传统生产技术设备,如焊接、机械加工和注朔成型技术设备,新近出现的3D打印技术设备也出现在了本届展会上。3D打印技术又被称为增材制造技术,是指利用添加材料的方法来制造实体物品的技术。根据欧洲模具展公布的信息,3D打印设备已经有20种不同的方式打印方式,使用的打印材料除了朔料、金属之外,越来越多的其他材料也能被用与3D打印。 大卫·阿杜·阿毗基和其他乐队成员在欧洲模具展上表演所使用的电吉他、电子琴和架子鼓都是使用3D打印技术设备打印出来的,这他们的表演最吸引人观众的地方。大卫他们的表演想人们展示了3D打印技术发展的两个重要趋势。第一个趋势:人们利用3D打印技术,不用花多少钱就能成为一个生产商。 使用3D打印机来制造乐器已经不是什么新鲜事了。此前,在位于新西兰奥克兰的梅西大学,有一个名叫奥拉夫·迪戈尔的机电一体化教授,他喜欢弹吉他,曾使用3D打印机制造了一些乐器。随着奥拉夫·迪戈尔的设计乐器的品质不断提高,奥拉夫·迪戈尔将自己制造的乐器图片发表在了自己的博客上;不久就有人联系奥拉夫·迪戈尔,表示愿意购买这些乐器。在2012年,奥拉夫·迪戈尔成了一个叫做“ODD 吉他”的公司,进行小规模地制造乐器。ODD吉他公司每一把吉他都是按照买家的要求定制,因此,每一把吉他都是独一无二的。ODD吉他公司在销售了20多把吉他后,奥拉夫·迪戈尔将销售定制3D打印吉他的业务转给了一个名叫“3D系统”的美国公司,正是3D系统公司为大卫·阿杜·阿毗基他们制造了在欧洲模具展上表演用的乐器。 “沃雷斯联盟”是一家3D打印技术行业资讯公司。在沃雷斯联盟主办的一次展会上,奥拉夫·迪戈尔声称:“销售3D打印技术制造的产品,几乎不会遇到资金危机。”3D打印机能按照买家要求打印吉他,因此,制造厂商不会有任何库存问题。此外,3D打印机电整个制造产品的过程都由电脑软件控制,如果要对产品进行修改,直接用电脑软件修改即可,无需调整价值不菲的生产设备。例如,一些吉他买家告诉奥拉夫·迪戈尔他们想要在电吉他上嵌木板,以保证吉他声音的纯正,奥拉夫·迪戈尔随即按照他们的要求进行了调整,虽然在奥拉夫·迪戈尔看来,在吉他上嵌不嵌木板,发出的声音根本没有任何区别。 第二种趋势:将传统加工技术与3D打印技术相结合。奥拉夫·迪戈尔对此解释道:“你能用3D打印机打印出所有东西,但所有东西都要用3D打印机来制造,这就有点过了。”因此,奥拉夫·迪戈尔制造的吉他、架子鼓和电子琴都使用了一些使用传统技术制造的零件和电子元件。(虽然3D打印机也能打印出电子元件。)奥拉夫·迪戈尔的想法是用当前最好的加工方法来制造乐器。奥拉夫·迪戈尔制作了一把名叫“蒸汽朋克”的电吉他,“蒸汽朋克”的内部装满了转动的齿轮;“蒸汽朋克”这种精细的结构如果使用常规机床制造,将是十分困难。 在欧洲模具展上,人们还见到了将传统技术和3D打印技术相结合的其他应用领域。德国DMG Mori Seiki公司是一家在德国和日本都有生产基地的工业机床制造商,该公司在本次欧洲模具展上,想人们展示了他们制造的融合3D打印技术和传统加工技术的混合加工技术机床原型,该机床自身能存储金属粉末,利用激光将金属粉末融化,并将融化后的液态金属一层层地焊接在一起;除了这种激光打印设备,该机床还配有多轴联动铣削头,能将工件上多余的材料去除掉,从而加工出高精度零件。 3D打印技术看起来还不错吧?大卫·阿杜·阿毗基对此已有了深刻印象,但大卫·阿杜·阿毗基认为要是对3D打印机还做一些改进,做出的乐器会更好。不论怎样,这些3D打印机打印出来的乐器足以让奥齐·奥斯本和其他黑色安息日摇滚乐队的成员大吃一惊了。
  • 《西安交大费强团队在低碳合成生物制造领域取得重要进展》

    • 来源专题:绿色化工
    • 编译者:武春亮
    • 发布时间:2024-11-20
    • 在全球共同应对气候变化的大背景下,发展温室气体(CO2、甲烷等一碳气体)捕集与利用技术,已然成为推动绿色低碳发展以及实现“双碳”目标的关键路径。以一碳温室气体为原料的低碳生物合成技术是典型的碳负性技术,正引领着物质合成的全新范式,对于减缓全球气候变化、达成可持续发展具有重大意义。依克多因,又名四氢嘧啶,是一种源自天然微生物的氨基酸衍生物。作为一种渗透压保护剂,它具有锁水、促进修复以及隔离刺激等特性,被广泛应用于化妆品、食品保鲜、医药保健等领域。当前,化妆品原料依克多因的生产主要以糖基底物生物合成为主,若将温室气体作为其生物制造的原料,不但能够有效降低生产成本,还可以实现可再生碳资源的高效利用,对推动低碳生物合成技术创新以及降低碳排放意义重大。 近年来,我国对温室气体减排与转化利用给予高度重视,然而,如何将一碳温室气体高效转化为长碳链分子(C3+)依旧面临着巨大挑战。化学-生物耦联催化策略在一碳温室气体合成中长链化学品方面展现出巨大潜力,但该杂合系统中化学-生物模块的适配性仍有待提升。针对上述问题,西安交通大学科研团队联合西北大学和电子科技大学等科研人员创新性地提出了一种新型的电化学-生物催化耦合系统,用于将CO?和甲烷升级为高价值化妆品原料依克多因。这项工作创新性地证实了将电化学反应与微生物发酵过程相结合的可行性,实现了电化学-生物催化模块的高效适配,提出了基于一碳温室气体生物制造依克多因的新路线,同时也为缓解全球气候变化提供了一条有效途径。 在这项工作中,研究团队合作致力于开发一种电化学CO2还原反应与甲烷(CH4)微生物转化过程的耦合系统,实现依克多因的一碳生物制造。为满足能源需求并提高微生物转化效率,研究团队首先合成了一种高选择性和生产率的CuPc/BNCNT催化剂,该催化剂能够在经济规模上加速CO2生成CH4(法拉第效率73.5%),接着以高能量的一碳底物CH4为碳源,有效促进工程改造的甲烷氧化菌的生长,经生物转化合成高价值的长碳链分子依克多因。该研究在建立了高效电催化系统之后,利用代谢工程改造和开发两阶段发酵等策略,实现了电催化与可放大的CH4生物转化系统的匹配。值得一提的是,通过电催化系统与生物催化系统的适配,实现了将CO2高效转化为高值产品依克多因(1146 mg L–1),较传统生物转化CO2合成效率提高了10倍,同时显著提升了产率和减碳效益。这一研究成果证实了高值产品电气化生物合成的可行性及巨大潜力,为生物制造和能源储存提供了新的思路和途径。 该研究成果以《可扩展电化学-生物催化耦合系统实现从温室气体合成依克多因》(Scalable Electro-Biosynthesis of Ectoine from Greenhouse Gases)为题,发表在国际顶尖学术期刊《德国应用化学》(Angewandte Chemie International Edition)上。 论文链接:https://doi.org/10.1002/ange.202415445