《生物能源启动许可ORNL食品垃圾焚烧系统》

  • 来源专题:可再生能源
  • 编译者: pengh
  • 发布时间:2019-09-04
  • 位于田纳西州诺克斯维尔的Electro-Active Technologies公司在美国能源部橡树岭国家实验室工作期间,独家授权两家创业公司联合创始人发明并获得专利的生物精炼技术。 这些技术可作为将有机废物转化为可再生氢气用作生物燃料的系统。

    该系统结合了生物学和电化学,以降解有机废物 - 例如植物生物质或食物废物 - 以产生氢气。 在微生物电解过程中,多样化的微生物群落首先分解有机物质。

    “转化复合物通常需要数千种微生物

    从生物质到电子的有机混合物,“Abhijeet Borole说道,他与该公司首席执行官Alex Lewis共同创立了Electro-Active Technologies公司。 “我们开发了一种浓缩工艺,以创建这种[微生物]联合体,从而有效地从有机材料中提取电子。”

    他们设计的电解方法然后将质子和电子结合成氢分子。尽管Borole和Lewis最初开发了两种工艺来解决生物燃料生产过程中形成的液体废物问题,但Electro-Active Technologies将专注于对抗食物垃圾。

    “我们今天浪费了大约40%的食物,这些食物在垃圾填埋场产生甲烷,”Borole说。 “在食品行业投入了多少精力和精力的情况下,这也是相当可观的。”

    “我们可以提供零排放燃料,减少交通排放,同时还使用食物垃圾来制造氢气,”他继续道。

    在与DOE的Energy I-Corps进行面谈之后,两人选择了食品废弃物作为微生物原料,同时参与DOE的Energy I-Corps,该计划有助于加速DOE实验室的商业化工作。由于客户通常必须支付处理食物垃圾的费用,因此基于食物垃圾的原料比使用必须购买的生物质具有经济优势。该公司正在为客户可以在现场安装模块化废物转换系统的原型。

    Electro-Active Technologies成立于2017年,致力于将行业和社区推向闭环运营,从而节省资金并提高可持续性。该创业公司于2月份被选中参加旧金山的IndieBio加速器计划,并最近被壳牌,丰田和纽约州能源研究与发展管理局赞助的H2 Refuel Accelerator接受。

    “所有这些公司和机构都对推进氢能经济感兴趣,因为它被视为21世纪的主要发展之一 - 能够应对气候变化,”Borole说。

    Abhijeet Borole在ORNL工作了20多年,在那里他领导了微生物燃料电池和电解槽的研究,以开发用于废物转化的生物电化学系统。他现在是田纳西大学的研究教授,同时也在与创业公司合作。

    Alex Lewis通过田纳西大学布雷德森跨学科研究和研究生教育中心,在Borole的指导下研究了能源科学与工程的博士候选人。作为Electro-Active Technologies的首席执行官,他最近在田纳西河谷管理局的支持下被选为ORNL第三个创新十字路口队列的研究员。

    能够实现这项技术开发的初步研究得到了美国能源部能源效率和可再生能源办公室,生物能源技术办公室的支持。该技术由ORNL和田纳西大学研究基金会联合申请专利,该基金会是UT系统的非营利性附属机构,旨在促进UT知识产权的商业化。

    ——文章发布于2019年8月28日

相关报告
  • 《城市生活垃圾焚烧发电技术的研究及应用》

    • 来源专题:中国科学院文献情报先进能源知识资源中心 |领域情报网
    • 编译者:guokm
    • 发布时间:2020-11-06
    • 基于我国城市生活垃圾多水分、低热值的特点,某市城市生活垃圾焚烧发电项目,采用新型“顺推干燥+逆推燃烧燃尽”结构的复合式机械炉排炉。运用“SNCR脱硝+半干法脱酸+消石灰干粉喷射+活性炭喷射装置+布袋除尘器”烟气净化系统处理、炉渣有效利用+飞灰采用稳定剂+水泥固化/稳定化的灰渣处理系统,“预处理+混凝沉淀+厌氧+外置式MBR(膜生物反应器)+NF(纳滤)/RO(反渗透)”渗滤液处理系统,解决了焚烧发电产生的废气、废渣、废水问题。 引言 随着城市人口日益增加,生活垃圾逐年上升。生活垃圾带来的环境污染日趋严重。2016年10月国家能源局印发《生物质能发展“十三五”规划》指出:在人口密集、具备条件的大中城市稳步推进生活垃圾焚烧发电项目建设。鼓励建设垃圾焚烧热电联产项目。加快应用现代垃圾焚烧处理及污染防治技术,提高垃圾焚烧发电环保水平。到2020年,生物质能基本实现商业化和规模化利用。城镇生活垃圾焚烧发电750万千瓦。2016年12月,国家发展和改革委员会、住房和城乡建设部联合印发《“十三五”全国城镇生活垃圾无害化处理设施建设规划》指出:到2020 年底,设市城市生活垃圾焚烧处理能力占无害化处理总能力的50%以上,其中东部地区达60%以上。生活垃圾焚烧发电是目前国内外实现生活垃圾“无害化、减量化、资源化”的重要途径。 1、工程概况 某城市生活垃圾焚烧发电厂项目采用炉排炉焚烧技术,设计生活垃圾总处理规模为1500t/d。一期规模为1000t/d,平均年处理生活垃圾45.34万t,建设两条2×500t/d的生活垃圾焚烧线及余热锅炉+1×18MW凝汽式汽轮发电机组。机、炉的参数选定为中温、中压(锅炉4.0MPa、400°C;汽机3.83MPa、395°C)。预留1×500t/d的生活垃圾焚烧线及配套系统扩建场地。工程年处理原生垃圾36.5万t,年发电量约为9.77×107kW·h。项目由主体工程(包括焚烧炉、余热锅炉、汽轮机、发电机、主厂房)、公用工程(包括供水、排水、电力等系统)、辅助工程(包括燃油设施、压缩空气系统、化学水系统、垃圾贮存系统、门卫室)、环保工程(包括烟气净化系统、炉渣处理系统、飞灰处理系统、渗透液处理系统等)组成。 2、工艺系统 该项目采用炉排焚烧,焚烧工艺分为八大系统:垃圾接收储存与输送系统、垃圾焚烧系统、热能利用系统、烟气净化系统、炉渣处理系统、飞灰处理系统、渗滤液处理系统、循环冷却水系统。 垃圾车经地磅秤称重后进入垃圾卸料平台,卸入垃圾贮坑。封闭式的垃圾贮坑正常运行时为负压,以确保坑内臭气不外逸。垃圾在垃圾贮坑内存放发酵后,通过垃圾吊车抓斗进入焚烧炉给料斗,经溜槽进入焚烧炉内燃烧。垃圾燃烧的助燃空气一次风取自垃圾贮坑,经蒸气空气预热器加热后送入炉内。二次风(从锅炉房上部吸取)加压后进入炉膛,使炉膛烟气产生强烈湍流,用于消除化学不完全燃烧损失,有利于飞灰颗粒的燃尽。焚烧炉的点火燃烧器供点火升温用。当垃圾热值偏低、水分较高,炉膛出口烟气温度不能维持在850°C以上时,为保证炉温,用柴油作为辅助燃料,启动辅助燃烧器。垃圾在炉排上通过干燥、燃烧、燃尽三个区域,充分燃烧,灰渣进入出渣机,炉渣送入灰渣贮坑,装车外运进行综合利用,不能利用部分送入填埋场处理。垃圾燃烧产生的高温烟气经余热锅炉回收热能产生蒸气供汽轮发电机组发电。烟气冷却后进入烟气净化系统处理后通过烟囱排放至大气。飞灰集中到灰库,经离子矿化稳定固化后至填埋场处理。垃圾渗滤液入渗滤液收集和处理系统,处理达标后回用。 3、技术特点 该项目一期两条2×500t/d的生活垃圾焚烧线路焚烧炉采用机械炉排技术。该焚烧炉是在我国多年垃圾焚烧炉运行经验的基础上,结合国内垃圾多水分、低热值的特点,对国外焚烧炉进行优化自主研发的新型焚烧炉。针对垃圾焚烧产生的废气、废渣、飞灰、渗滤液等污染物,采用先进、科技、环保的技术处理工艺。烟气净化采用SNCR脱硝+半干式脱酸+干法活性炭喷射装置+布袋除尘组合工艺。飞灰采用稳定剂+水泥固化/稳定化处理工艺,渗滤液处理采用除渣预处理+混凝沉淀+厌氧+外置式MBR(膜生物反应器)+NF(纳滤)/RO(反渗透)组合处理工艺。 3.1 自主研发机械炉排焚烧炉 焚烧炉是垃圾焚烧处理工艺的核心设备。国内目前使用的焚烧炉主要有4种:机械式炉排炉、回转式焚烧炉、流化床焚烧炉、静态连续焚烧炉。机械炉排炉是目前世界上技术成熟、处理规模较大的生活垃圾焚烧炉。我国的生活垃圾、污泥、餐厨垃圾组成的复合型垃圾,高水分、低热值、不分拣,对焚烧炉技术要求较高。该项目采用的焚烧炉是在国外焚烧炉设计的经验上,结合国内生活垃圾的特点,自主研发的新型顺推干燥+逆推燃烧燃尽结构的复合式机械炉排炉。炉排炉主要由进料装置、推料装置、顺推炉排、逆推炉排、落渣灰斗、出渣机及液压站组成。 采用顺推段干燥+逆推段燃烧、燃尽的结构设计。顺推段烘干垃圾,各段之间存在落差,可使垃圾跌落散开;顺推、逆推均为往复炉排,垃圾可有效地翻转、搅拌,延长了垃圾在炉内的停留时间,使垃圾燃烧更高效。热灼减率≤2.6%。烟气在炉膛内温度≥850°C的停留时间不少于2s,二噁英排放远低于0.1ng/Nm3的欧盟排放标准,NOx排放浓度较传统炉排炉降低30%以上。同时采用计算机软件CFD对焚烧炉进行模拟分析,保证产品安全稳定。燃烧控制系统采用ACC技术,实现产品自动化控制。 3.2 烟气净化系统 烟气净化系统主要针对酸性气体(HCl、HF、SOx、NOx)、二噁英、重金属及颗粒物等进行控制,其工艺设备主要由四部分组成:即NOx的去除、除NOx外的其他酸性气体(以下简称为酸性气体)脱除、二噁英的去除和颗粒物捕集,其中NOx的去除在锅炉部位进行,其他在烟气治理部分。另外,烟气中有机物、重金属等污染物在以上工艺治理过程中同时加以捕集。该项目烟气净化系统采用目前最成熟的半干式烟气处理系统,工艺流程为:SNCR脱硝+半干法脱酸+消石灰干粉喷射+活性炭喷射装置+布袋除尘器。烟气净化系统工艺流程见图1。 烟气净化系统布置在每台余热锅炉之后,依次是反应塔、布袋除尘器、引风机和烟囱。反应塔和布袋除尘器布置在室内,引风机布置在室外。SNCR脱硝用于脱除烟气中的NOx,脱除率为45%~55%。半干法脱酸脱除烟气中HCl、HF、SOx等气体。干粉喷射是对半干法脱酸的补充。活性炭喷射装置用于吸附烟气中的重金属和二噁英。布袋除尘器捕捉粉尘的同时,还可以对附着粉尘进一步脱酸、吸附重金属和二噁英。净化达标后的烟气,再经引风机和烟囱排入大气。 3.3 灰渣处理系统 该项目灰渣处理系统包括:炉渣、炉排漏渣、反应塔排灰、锅炉尾部烟道灰和除尘器收集的飞灰等。底渣和飞灰的处理以机械输送方式为主,灰渣外运采用汽车运输。锅炉尾部烟道灰排入湿渣系统一起处理。该工程对炉渣和飞灰分别进行收集和处理。炉渣处理系统主要包括除渣机、渣坑、炉渣抓斗起重机、制砖机等设备。炉渣属一般废弃物,经除渣机水冷后,外运至厂外制砖或做道路基材。飞灰处理系统主要包括飞灰输送机、灰仓、混炼机、水泥仓、药剂配送装置、飞灰打包机等设备。飞灰属危险废弃物,采用稳定剂+水泥固化/稳定化的飞灰处理工艺,即水+水泥+螯合剂混合搅拌,养护并经检测合格后,再送填埋场或指定地点填埋。 3.4 渗滤液处理系统 渗滤液处理系统主要设施、设备包括调节池、厌氧处理站、好氧生物膜处理装置、超滤、纳滤、反渗透装置及其他辅助设施等。采用预处理+混凝沉淀+厌氧+外置式MBR(膜生物反应器)+NF(纳滤)/RO (反渗透)组合系统。浓缩液量小于15%,出水水质达到回用标准。污泥含水率<75%后进入垃圾池,产水用于厂区生产和杂用水。浓缩液采用半干法脱酸制浆、飞灰稳定化处理加湿,多余回喷焚烧炉。沼气回焚烧炉焚烧。臭味气体收集进垃圾池,一次风进焚烧炉高温消解臭味。 4、运行情况 该城市生活垃圾焚烧发电项目于2016年12月竣工并投入试生产,工程的生产设备与环保设施运行正常。2016年11月、12月及2017年7月,对该项目的废气、废水、噪声进行了现场监测(见下表)。工程排放的废气、锅炉排水、循环冷却水排水、噪声各污染因子均符合国家相关环保标准限值要求,固体废物得到妥善处置。该工程2018年2月通过省环保厅的竣工验收。 5、结论 该城市生活垃圾焚烧发电项目,针对城市生活垃圾多水分、低热值的特点,采用新型顺推干燥+逆推燃烧燃尽结构的复合式机械炉排炉。焚烧产生的烟气,采用SNCR脱硝+半干法脱酸+消石灰干粉喷射+活性炭喷射装置+布袋除尘器组合烟气净化系统处理。炉渣经除渣机水冷后,外运至厂外制砖或做道路基材。飞灰属危险废弃物,采用稳定剂+水泥固化/稳定化的飞灰处理工艺,即水+水泥+螯合剂混合搅拌,养护并经检测合格后,再送填埋场或指定地点填埋。渗滤液采用预处理+混凝沉淀+厌氧+外置式MBR(膜生物反应器)+NF(纳滤)/RO (反渗透)组合系统处理。项目采用高标准、先进技术、现代化管理,注重环保和资源再生、循环经济效益,实现城市生活垃圾减量化、资源化、无害化、产业化处理。技术先进、成熟、可靠,值得推广及应用。
  • 《城市垃圾焚烧发电蒸汽系统技术分析》

    • 来源专题:中国科学院文献情报先进能源知识资源中心 |领域情报网
    • 编译者:guokm
    • 发布时间:2020-01-01
    • 随着我国城市化的逐步提高,伴随着城市人口激增一系列的城市问题也逐渐的显现出来,尤其是城市垃圾处理的问题,严重影响着城市居民的生产生活。如何保证将城市垃圾的数量减少并且尽可能地将城市垃圾转变为人们可以利用的资源,这是值得人们关注与研究的。目前,城市垃圾焚烧发电已经成为了城市垃圾处理的重要手段,因此本文笔者将结合多年的工作经历以及在垃圾焚烧发电领域的研究,对垃圾焚烧发电蒸汽系统技术进行详细的分析探讨。 2002年1月宁波枫林绿色能源开发有限公司设计建设的垃圾焚烧发电厂正式投产运营,这是我国第一家大型的、规范化的垃圾焚烧发电厂,其生产、运营状况以及为社会带来的环境效益引起了社会各方面的关注。由于垃圾焚烧发电厂具有其特殊的运行特点,因此与常规的火力发电厂不同的是:垃圾焚烧发电厂不仅需要常规的蒸汽系统,还需要考虑到汽水旁路系统以及与垃圾焚烧发电与之对应的电厂工作方式。这是垃圾焚烧发电系统最为主要的技术特点,同时也是与常规发电方式的主要区分指标。 一、汽水旁路系统的主要构成以及技术特点 垃圾焚烧发电厂在运行的过程中要求做到停机不停炉,因此针对垃圾焚烧发电厂的该技术特点,汽轮机系统要考虑设置合理高效的旁路系统。目前,垃圾焚烧发电技术领域多采用的是以下两种汽轮机旁路系统:一种是旁路减温减压器与汽轮机及旁路公共凝汽器配合使用,另一种是旁路减温减压器与旁路高压凝汽器配合使用。 (一)旁路减温减压器与汽轮机及旁路公共凝汽器配合使用的技术特点 旁路减温减压器与汽轮机及旁路公共凝汽器配合使用的汽水旁路系统主要用于安装有2台以上汽轮机的垃圾焚烧发电厂。采用这种汽水旁路系统可以保证任何一台汽轮机停机工作时,而锅炉仍然可以在额定的负荷下工作,同时另一台正在运行的汽轮机为保证提高发电量应适量的增加进汽量,同时多余的新蒸汽从汽轮机旁路系统排入凝汽器。该旁路系统的主要组成成分为减温水系统、低负荷减温减压系统与旁路减温减压系统等,新产生的蒸汽通过减温减压系统进入凝汽器,在蒸汽进入凝汽器后,凝汽器设备内的压力会相应提高,可能压力值会是常规运行的数倍,因此这时虽需要的冷却水与设备内的冷却面积也会大幅度的提高。除此之外,还有需要设置低负荷减温减压系统,当汽轮机停机后,新产生的蒸汽再通过减温减压装置后分成两路,一路进入空气预热器用于加热空气,另一路进入除氧器作为加热蒸汽,其主要作用是加热。 这种汽水旁路系统具有系统简单、配套设备少、节省占地面积、与之对应的凝结水系统与循环冷却水系统结构也相对简单、日常维护费用较低等。但是同时该系统也具有一定的局限性,由于冷凝器所承受的压力可能高于正常压力值的数倍,并且所需的冷凝水较多,一些设备需要进行特殊的加工制作,因此对于设备的设计与制造有着较高的要求。 (二)旁路减温减压器与旁路高压凝汽器配合使用的技术特点 与上面说到的旁路减温减压器与汽轮机及旁路公共凝汽器系统相比较,这一系统的构成更加的复杂,除了上一种汽轮机旁路系统相同的旁路减温减压系统、低负荷减温减压系统与减温水系统之外,还要设置与该系统对应配套的其他设备,包括:旁路凝结水系统以及射水抽气系统。该系统主要的工作原理如下:当汽轮机停止工作时,焚烧炉依旧保持额定的功率继续保持运行这是焚烧炉新产生的蒸汽直接通过减温减压器进入高压凝汽器,蒸汽在凝汽器中冷凝形成冷凝水,然会再进入凝结水母管,最终进入除氧器。该系统当汽轮机停机时,低负荷减温减压器同步开启,新产生的蒸汽通过上述步骤分别用于焚烧炉级空气预热器与锅炉给水加热与焚烧炉,这样可以保证在停机状态时,焚烧发电系统的各个部分都正常的运行。 该系统可以保证旁路系统一直处于热备用状态,意味着当焚烧发电系统汽轮机发生故障时,该旁路系统转换为运行状态所需要的时间极少,并且其转换时间与其统计负荷由100%转至为0的时间几乎同步,同时该旁路系统可以针对汽轮机的运行负荷进行适度的调节,从而该系统的运行是非常的可靠的,并且相对更有保证。但是该汽轮机旁路系统的缺点也是非常的显而易见,该系统需要非常多的与之配套的设备,因此该系统的设备安装方案非常复杂,并且由于设备数量的增多,系统出现故障的几率也会大幅度的增加,因此日常维护的费用也相对较高,这些缺陷都是难以避免的。 (三)两种汽轮机旁路系统的比较 文章上面详细阐述了旁路减温减压器与汽轮机及旁路公共凝汽器配合使用与旁路减温减压器与旁路高压凝汽器配合使用的两种汽轮机旁路系统的设计方案的主要的组成设备、工作原理与优缺点。下面将对两种系统进行详细的比较:旁路减温减压器与汽轮机及旁路公共凝汽器配合使用的汽轮机旁路系统所需设备较少,结构相对简单,设备占地面积少,但是其主要设备需要承受非常大的蒸汽压力,因此许多设备的关键位置需要特殊设计,对设计与制造的工艺要求较高,从目前的情况来看,我国很难达到这样的设计制造标准;旁路高压凝汽器配合使用的汽轮机旁路系统对于设备的制作工艺要求较低,虽然设备数量较多并且占地面积较大,但是其系统运行相对更有保障。总体来说,第二种系统的投资相对较低并且运行也相对有保障,因此第二种汽轮机旁路系统更加符合我国国情。 二、汽水系统的运行方式以及技术分析 (一)二台焚烧炉与余热锅炉 二台焚烧炉与余热锅炉的汽水系统可以保证在额定功率以及正常负荷波动的情况下保证运行,焚烧炉焚烧垃圾产生的热量传输入余热锅炉,余热锅炉驱动汽轮机将热能转化为电能,机组可以在正常的运行范围内尽可能多的发电,从而保证经济效益。当发电系统保证以额定功率发电或者发电功率在一定的正常范围内波动的情况下,所发电量可以送入电网机组。 (二)汽轮机停机,汽水旁路系统运行 当汽轮机停止运行时,关闭汽轮机的主气阀,调节汽水旁路系统的气阀,是汽水旁路系统投入运行。在该运行方式下,焚烧垃圾产生的热蒸汽一部分进入空气预热器,经过空气加热后,排入全场的输水系统;另一部分热蒸汽进入除氧器,用于加热余热锅炉给水。 (三)厂用电孤岛运行 当汽轮机与汽水旁路系统同时运行的情况下,汽轮机降低负荷,垃圾焚烧发电系统产生的电量仅仅满足发电厂的用电,其主要的操作是通过调节汽轮机的主气阀,降低汽轮机的发电功率,使其发电功率恰好等于全厂的用电功率,多余的热蒸汽通过调整汽水旁路系统的主气阀使其进入汽水旁路系统进行处理。由于汽轮机低负荷运行时,汽轮机内部的压力非常的低,因此同步开启旁路系统的低负荷减温减压系统,保证系统的压力平衡。 三、总结 目前,垃圾焚烧发电技术在我国经历了近二十年的发展已经相对完善,为未来我国各地区建立垃圾焚烧发电厂提供了重要的技术保障。我国各地应依据当地的经济发展状况等实际条件选用合理的垃圾焚烧发电技术的各设备系统,以求实现经济利益最大化与环境保护最大化。垃圾焚烧发电系统不仅极大的解决了城市垃圾过剩的状况,为我国城镇化减轻压力,其运行所产生的电量还为社会带来了巨大经济效益,解决了部分地区的用电紧张问题,同时与之配套的其配套的生产模式为社会提供了大量的就业岗位,因此垃圾焚烧发电技术对于我国建设环境友好型社会、促进我国社会经济发展与基础设施建设有着重要的意义。 参考文献: [1]李登平.用于处理垃圾焚烧废气的燃烧装置[J].华中科技大学,2015(11). [2]李春建.垃圾焚烧锅炉多目标优化运行评价研究[D].华南理工大学,2017(05). [3]田行军.环境保护以及其经济效益的开发[D].昆明理工大学,2016(12).