《燃料电池的发展过程》

  • 来源专题:中国科学院文献情报先进能源知识资源中心 |领域情报网
  • 编译者: guokm
  • 发布时间:2019-11-26
  • 1800年。WiUi Nicholson和Anthony Carlisle描述了利用电将水分解成氢气和氧气的过程。William Grove被公认为于1839年第一次演示了燃料电池。Grove看到了Nicholson和Carlisle的笔记。认为通过将电极结合进一个串联电路中可以“重新合成水”。不久他利用一个称为“气体电池”的装置实现了这一目标。电池厂家装置工作时。氧气和氢气中的铂电极分别浸泡在稀释的硫酸电解质溶液中。密封的容器包含水和气体。可以看到在两根管中的水平面随着电流的流动而上升。所谓的电池组使用一个浸泡在硝酸中的铂电极和一个浸泡在硫酸锌中的锌电极。在约1.8V时产生了约12A的电流。

      物理化学奠基人之一Friedrich Wilhelm Ostwald(1853--1932年)就理论上如何理解燃料电池的工作原理做出了巨大的贡献。1893年,锂电池生产厂通过实验方法。确定了燃料电池各组成部件的作用。

      化学家Ludwig Mond(1839--1909年)大部分的职业生涯用在了研究苏打制造和镍提炼上。1889年。Mond及其助手 CarlLanger利用煤气进行了无数次试验。他们使用了由薄的多孔的铂制成的电极。在液态电解质方面遇到了诸多困难。他们在0.73V电压下获得了每平方英尺(电极的面积)6A的电流。

      CharlesR.AlderWright(1844--1894年)和C.Thompson差不多在同一时间开发出了一个类似的燃料电池。在防止气体从一个腔室泄漏到另一个腔室方面。锂电池充电器遇到了困难。这个原因和其他一些原因使得其电池的电压未能达到1V。他们认为。如果有更多的资金支持。他们可以制造出一个更好的.更结实的电池。从而为众多用途提供足够的电力。louisPaulCailleteton(1832--1913年)和LouisJosephColardeau的法国团队得到了类似的结果。但他们认为。由于需要“贵金属”。因此锂离子电池充电器这种发电过程并不实用。此外。锂电池充电器厂家在此期间发表了许多论文。认为18650锂电池充电器是如此的便宜。因此一种效率更高的新系统并不能大幅降低电的价格。

      电工程师和化学家willim.Jacques(1855--1932年)不顾这些批评意见。于1896年制造出了一个“碳电池”。引起了科学界的震惊。空气注入碱性电解质。与碳电极发生反应。他认为。他已经获得了82%的效率。但实际上只获得了8%的效率。

      20世纪初。瑞士科学家EmilBaur(1873--1944年)和他的几个学生对不同类型的燃料电池进行了多次试验。实验设备包括高温设备。以及一个使用陶瓷和金属氧化物固体电解质的单元。

      20世纪40年代。苏联科学家O.K.Davtyan进行了多次试验。以提高电解质的传导性和机械强度。许多设计都未能达到期望的结果。但Davtyan和Baur的工作为当前流行的熔融碳酸盐和固体氧化物燃料电池设备的研究奠定了必要的基础。

相关报告
  • 《上海市燃料电池汽车发展规划》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2019-01-21
    • 为贯彻落实《“十三五”国家科技创新规划》、《上海市科技创新“十三五”规划》等规划精神,进一步发挥科技创新对实体经济能级提升的促进作用,加快推动上海汽车产业转型升级,上海市科委会同市经信委、上海市经济和信息化委员会、上海市发改委联合研究制订了《上海市燃料电池汽车发展规划》。全文如下: 上海市燃料电池汽车发展规划 发展燃料电池汽车,是顺应全球汽车产业生态变革趋势、实现我国汽车工业由大变强的重要途径,是上海贯彻落实国家创新驱动发展战略、加快建设全球科技创新中心的重要实践,是巩固提升上海实体经济能级、驱动上海汽车产业转型及占领未来制高点的重要突破口,是应对能源安全、环境保护等社会挑战、建设2040卓越全球城市的重要立足点。为加快推进本市燃料电池汽车创新突破,制定本发展规划。 一、燃料电池汽车发展现状与趋势 1、汽车与能源产业总体发展形势 汽车产业是世界主要工业国家的支柱产业,是衡量一个国家综合实力和发达程度的重要标志。随着全世界汽车保有量的日益增多,能源紧缺和环境污染问题愈发凸显,已成为人类生存和发展面临的两大挑战。寻找和发展新的汽车清洁能源,将对全球汽车和能源产业格局以及社会经济发展产生重大深远的影响。 氢能和燃料电池技术是世界能源转型和动力转型的重大战略方向。燃料电池汽车具有环保性能佳、转化效率高、加注时间短、续航里程长等优势,是未来汽车工业可持续化发展的重要方向,是应对全球能源短缺和环境污染的重要战略举措。发展燃料电池汽车已成为全球汽车与能源产业转型升级的重要突破口。 各发达国家高度重视燃料电池汽车,并积极推动配套设施的建设。美、日、欧盟等主要国家和地区将燃料电池汽车纳入国家或地区战略发展体系进行规划,设立专项进行研发与示范推广,并制定各种政策抢占先机。如日本计划到2020年普及约4万辆燃料电池汽车,建设160座加氢站;德国计划在2023年左右普及10万辆,建设400座加氢站。目前全球燃料电池汽车已进入技术与市场示范阶段,预计在2020年将全面进入商业化阶段。产业链巨头纷纷组成联盟进行燃料电池汽车商业化协同攻关,并与能源、矿产等企业形成更广泛的合作,呈现出骨干整车企业牵引全产业链的发展趋势。 2、国内燃料电池汽车发展形势 国家高度重视燃料电池汽车产业。近两年,国家相关部委密集出台政策,大力支持燃料电池汽车发展。《国家创新驱动发展战略纲要》、《“十三五”国家科技创新规划》、《“十三五”国家战略性新兴产业发展规划》、《中国制造2025》、《汽车产业中长期发展规划》、《“十三五”交通领域科技创新专项规划》等纷纷将发展氢能和燃料电池技术列为重点任务,将燃料电池汽车列为重点支持领域,并明确提出:2020年实现5000辆级规模在特定地区公共服务用车领域的示范应用,建成100座加氢站;2025年实现五万辆规模的应用,建成300座加氢站;2030年实现百万辆燃料电池汽车的商业化应用,建成1000座加氢站。 我国具备一定的燃料电池汽车研发基础。在国家科研计划和示范项目的持续支持下,国内已初步掌握关键材料、部件及动力系统的部分关键技术,基本建立了具有自主知识产权的车用燃料电池动力技术平台,累计开发数百辆燃料电池汽车,结合奥运、世博、亚运会、大运会、UNDP等示范项目,开展了一定规模的示范运行。近期,广东、湖北等地纷纷成立氢能与燃料电池汽车产业基金,以资本为纽带,初步形成了产业集群,开展了一定规模的示范应用。 推动燃料电池汽车发展的形势日益紧迫。目前我国燃料电池汽车正面临着缺乏实施方案、基础设施规划与建设力度不够、技术研发投入不足、产业链不完善等难题,严重阻碍了我国燃料电池汽车商业化进程。我国是全球燃料电池汽车最重要的潜在市场,若在燃料电池汽车领域落后于人,则在纯电动、插电式混合动力领域积累的优势将不可持续,错失由汽车大国走向汽车强国的战略机遇。 3、上海燃料电池汽车基础与机遇 先发优势明显。上海是我国燃料电池汽车技术研发、产业化的先行者。“十五”期间形成科研驱动模式,承担多项国家级项目,奠定了良好的技术积累、研发基础和人才团队等优势;“十一五”期间建立示范应用驱动模式,建设了加氢站等基础设施,积累了丰富的燃料电池汽车示范运行经验。“十二五”期间进入“整车牵引”发展模式。从2003年“超越一号”燃料电池汽车到2015年上汽荣威950燃料电池汽车,上海燃料电池汽车技术水平始终代表了我国燃料电池汽车发展的最高水平,并在世博会、新能源汽车万里行等示范应用中表现出众。 产业链资源较丰富。上海专注于氢能与燃料电池汽车技术研发、制造的企业数量超过30个,覆盖了关键材料、关键零部件、燃料电池动力系统与整车,以及推广应用与配套服务等各个环节,形成了较为完善的产业链。嘉定区已初步形成燃料电池汽车产业链资源聚集,汇聚包括上汽、汽车城集团、同济大学、机动车检测中心、上燃动力、电驱动、重塑、舜华、环球车享、治臻等一批重点单位,具备了氢能、燃料电池、动力系统平台、燃料电池汽车及示范运营等较完整的产业配套要素,持续吸引众多国内外整车企业和产业链优势企业落户。全球燃料电池汽车产业资源在上海汇聚的态势逐渐形成。 发展进入新阶段。燃料电池汽车已进入产业化的初级阶段,竞争焦点从技术研发转向全产业链的各个环节。上海亟需在示范运营推广、基础设施建设、公共服务平台、关键技术攻关等方面出台相应的发展规划和实施细则,抓住燃料电池汽车战略性新兴产业培育和发展的政策机遇,突破发展瓶颈。通过整车牵引和示范驱动,合理配置资源,抓住3至5年时间窗口期,确立上海在燃料电池汽车竞争中的优势地位,稳步推进燃料电池汽车规模化和商业化进程。 二、指导思想、基本原则和发展目标 1、指导思想 贯彻落实《国家创新驱动发展战略纲要》和上海建设具有全球影响力的科技创新中心的决策部署,将发展燃料电池汽车作为上海汽车产业转型升级的引领工程。牢牢把握技术发展与产业变革趋势,整合国内外优势资源,充分发挥上海优势,集中突破关键瓶颈,激发企业创新活力,建立国内领先、国际一流的燃料电池汽车技术链与产业链,营造高端生态圈,培育一批具有核心竞争力的龙头企业和领军人才,打造燃料电池汽车技术与产业创新体系,将上海建设成为世界一流的燃料电池汽车创新中心和产业高地。 2、基本原则 坚持顶层设计。加强燃料电池汽车产业的顶层设计、系统规划和科学布局,明确产业发展方向和突破口,编制规划及实施方案,推进重点任务落实。 坚持创新驱动。明确燃料电池汽车技术发展路线,重点探索燃料电池电堆、发动机集成与控制、辅助系统关键零部件等技术,突破燃料电池汽车技术发展瓶颈。 坚持示范引领。开展燃料电池汽车分时租赁运营和公交、物流车的区域示范运营,联动优化燃料电池氢能基础设施布局,加速燃料电池汽车全产业链完善,推进燃料电池汽车的规模化和商业化。 坚持协同推进。加深市、区联动和部门协同,形成牵头部门负责,相关部门配合的权责一致、规范有序、互相协调、运行高效的协同联动机制,推进产业链快速发展。 3、发展目标 推动燃料电池汽车试点示范运行,开展氢能基础设施、研发与测试服务平台等共性设施建设,突破车用燃料电池电堆、关键材料与核心零部件等关键技术,引导培育燃料电池汽车产业基地和产业基金,建成国内领先、国际一流的燃料电池汽车技术链与产业链,推进我国燃料电池汽车商业化发展。 ——近期目标(2017-2020年)。打造国内领先的燃料电池汽车技术示范城市,形成优质产业链资源聚集效应,实现燃料电池汽车核心关键技术紧跟国际行业水平。在技术链层面,实现电堆、系统集成与控制、关键零部件等核心技术跟踪国际水平,关键指标与国际接轨。在产业链层面,打造包含关键零部件、电堆、系统集成、测试认证服务、整车开发等环节的产业集群,聚集超过100家燃料电池汽车相关企业,培育有国际影响力的氢能与燃料电池技术研发中心1个、燃料电池汽车检验检测中心1个,燃料电池汽车全产业链年产值突破150亿元。在示范运行与推广层面,建设加氢站5-10座、乘用车示范区2个,运行规模达到3000辆,积极推动燃料电池公交、物流等车辆试点。 ——中期目标(2021-2025年)。规划燃料电池汽车示范区域,形成区域内相对完善的加氢配套基础设施建设,在区域公共交通、公务用车、商用物流等领域探索批量投放,提升燃料电池汽车全产业链国际竞争优势。在技术链层面,形成系列化燃料电池电堆产品,燃料电池汽车技术同步国际水平。在产业链层面,形成有国际影响力的整车企业1家、动力系统企业2-3家、关键零部件企业8-10家,进入世界前三的一流研发与公共服务机构2家,燃料电池汽车全产业链年产值突破1000亿元。在示范运行与推广层面,建成加氢站50座,乘用车不少于2万辆、其它特种车辆不少于1万辆,在公交、商用大巴、物流车前期试点运行成功的基础上,酌情扩大推广规模。 ——长期目标(2026-2030年)。成为具有国际影响力的燃料电池汽车应用城市,总体技术接近国际先进,部分技术达到国际领先,产业化全面成熟,面向私人用户实现进一步市场推广,带动氢能交通,辐射全国燃料电池汽车产业高速发展。在技术链层面,实现燃料电池汽车技术和制造总体达到国外同等水平;在产业链层面,实现上海燃料电池汽车全产业链年产值突破3000亿元,带动全国燃料电池产品的多元化应用。在示范运行与推广层面,最终形成以上海的燃料电池汽车产业链和价值链辐射全国,带动未来社会能源和动力转型。 三、燃料电池汽车发展重点任务 任务一、构建应用驱动的发展模式 基于中心城市的优势和功能定位,面向燃料电池汽车优势应用领域,探索互联网与新能源深度融合的燃料电池汽车创新运营商业模式,落实燃料电池汽车商业化运营组织管理、政策保障等措施,驱动燃料电池汽车产业链的快速发展。设置燃料电池汽车商业运营示范区,开展公共交通、定制共享班车、分时租赁等运营示范,牵引上海燃料电池汽车产业快速发展。 任务二、规划加氢站建设 落实责任主体,部署加氢站网络布局规划与建设,破解燃料电池汽车示范运行瓶颈。以产业配套和氢源基地等为基础,推动环上海加氢站走廊、嘉定、崇明、上海化工区、临港等示范区域加氢站的规划与建设。配合示范线路和示范区域建设,研究加氢终端补贴等政策,降低消费者使用成本,推动上海市氢能与燃料电池汽车产业协同发展。 任务三、创建产业园区 推动国际汽车城科技创新港、同济科技园、外冈新能源汽车及关键零部件产业基地等燃料电池汽车相关园区建设,提升燃料电池汽车企业创新活力,加快技术研发向产业化转移,吸引人才、资金和产业链上下游企业进一步集聚,促进国内外产业链之间的资源整合与良性互动,提高上海燃料电池汽车产业化发展水平和国际竞争力。至2020年,园区内相关企业超过100家,形成较为完善的燃料电池汽车产业集群;至2025年,在关键材料、零部件与核心产品领域,形成国内顶尖,国际领先的龙头企业3-5家。 任务四、建设公共服务平台 支持机动车检验检测中心、同济大学智能型新能源汽车协同创新中心等机构,进一步发挥在燃料电池发动机系统、电堆、关键零部件等方面服务能力,建设第三方优质公共服务平台,促进优势资源高效利用,形成健康开放的合作机制。支持开展技术研发服务、计量测试和检测认证服务,降低行业研发成本,激发中小企业活力和创造性。推进行业标准研究与制定,加强国内外产业与行业组织之间的联系,加快燃料电池和加氢站相关法规、标准的建立和完善。促进技术与产业交流,为企业与机构提供政策、行业信息、技术分析等服务,建立国际产业链间交流合作机制,加速产业化进程。 任务五、实施重大专项 定位燃料电池汽车产业大方向,瞄准世界领先水平,在电堆及核心材料、发动机系统集成与控制、关键零部件等领域开展技术攻关、工程研究和产品开发,推进测试技术和指标体系研究。突破燃料电池电堆关键技术,开展催化剂、质子交换膜、膜电极、双极板等核心技术研究,提高电堆产品的性能和寿命,降低成本。优化燃料电池发动机集成与控制技术,研究高比功率燃料电池发动机技术,实现可靠性、耐久性等的全面提升。加大辅助系统关键零部件技术研发力度,重点突破空压机、氢气循环泵、增湿器、DC/DC变换器等关键零部件技术,进一步完善关键零部件技术链。开展燃料电池电堆、关键零部件、发动机系统集成等方面的测试技术和指标体系研究。 任务六、设立产业基金 引导和鼓励有条件的各类资本设立燃料电池汽车产业基金,吸引撬动社会资金积极参与,进一步发挥市场配置资源的决定性作用,提升市场主体活力和发展潜力。
  • 《从各国模式看氢燃料电池产业发展思路》

    • 来源专题:中国科学院文献情报先进能源知识资源中心 |领域情报网
    • 编译者:guokm
    • 发布时间:2020-10-16
    • 氢能产业在中国正进入快速发展阶段,在政府的大力支持下,其产业化落地进程不断加快。但如何更好的发展本国氢能,需要放眼世界各国的现状与进展,在国际化的角度和高度上进一步借鉴和完善。 10月9日国务院常务会议通过了《新能源汽车产业发展规划》:2021年起,国家生态文明试验区、大气污染防治重点区域新增或更新公交、出租、物流配送等公共领域车辆,新能源汽车比例不低于80%,氢燃料汽车也被纳入新能源汽车“三纵”之列,这对目前热情高涨的氢能产业给予了更多的信心。 政府支持对任何新产业来说都是至关重要的,但今天的能源行业处于多元化竞争的局面,持续发展还是需要各种能源自身的竞争力。补贴期是有限的,暂时的,但利用好这个时间窗口很有意义。怎样的模式推动行业更快降低成本,形成规模化效应呢?也许,通过比较国际上几条氢能发展路径会对我国氢能产业化有一些启示。 加拿大模式:全球氢燃料电池技术的支持者 加拿大是世界氢燃料电池研发的鼻祖,氢燃料电池最早起源于加拿大、美国的军方,是军转民用的一项技术。加拿大的巴拉德(Ballard )、水吉能(Hydrogenics)企业为世界氢燃料电池贡献了基础研发的路径,也培养了很多氢燃料电池行业的专业人才。 1979年成立于加拿大的巴拉德动力系统公司1993年即在多伦多交易所上市,1995年在纳斯达克上市,是一家从事设计、开发、制造、销售各种燃料电池产品并提供相应服务的公司。 水吉能公司主要基于水电解技术和质子交换膜技术设计、开发和生产氢气发电、储能和燃料电池产品,是一家设计、制造、建设氢能系统的公司,拥有超过 60 年的行业经验。其总部位于加拿大密西沙加,设有德国、比利时制造工厂和设备,在多国设有代表处,为全球范围内的用户提供电解制氢设备、电动交通工具燃料电池、燃料电池 UPS 和发电站,同时拥有全球的“电能-气体”转换储能技术。 显然,在全球氢燃料汽车尚未产业化之前,以科研为主的企业长时间处于投入中,从目前可以录得的财务数据来看,两家氢燃料科技公司都未曾有过盈利,而且销售规模也没有突破。加拿大市场并不大,在产业链与规模化上,他们似乎更加致力于全球市场的开拓,目前全球很多氢燃料电池公司都有这两家加拿大公司的贡献。 日本模式:从产品端出发的乘用车发展路线 日本从50多年前就开始了氢燃料汽车的研究,大约20多年前,学术界基本上否定了这条技术路线,但近20多年来氢燃料电池的成本效率大大改善,日本又将氢能作为重要的发展战略,2011年日本福岛核电站事故后,日本的能源自给率从19.9%降到2012年的6%,氢燃料产业再一次被提上议事日程。 与此同时,科研机构和企业对氢燃料的研究并没有停止,从1995年至2015年的20年间,丰田持续的研究将燃料电池的功率密度提升了20倍,车载瓶压力从35兆帕提高到70兆帕,整车耗氢降低了37.5%,耐久性提高了6.2倍,系统成本降低至原来的1/20,生产能力提高了7.5倍,这使得氢燃料汽车产业化变成可以实践的现实。 本田早在 1999 年就在东京车展展示过 FCX 燃料电池汽车,2008 年推出第二代 FCX Clarity,因为产业尚不成熟,该车型于2014年停产;2016年12月本田推出量产车型 Clarity,售价为766万日元。Clarity加氢时间约为3分钟,JC08工况测试下的续航里程可以达到 750km,燃料电池的功率为 103kW。 日本新能源产业的技术综合开发机构NEDO是日本最大的公立研究开发管理机构,他们以达到燃油车的经济和性能指标倒推关键产业链的技术指标,并以此制定了氢燃料车的发展规划,但这是个从生产端出发的目标,所以,日本氢燃料车的推进始终没有达到预期的目标:他们2001年提出在2020年达到500万辆,到2010年又将2025年的目标调整为200万辆,到了2018年这一目标依然是遥遥无期,又将目标调整为2030年80万辆。 从2014年12月Mirai投产到2019年总共生产了10000多辆氢燃料电池乘用车,其中大部分出口美国和欧洲,国内销售不到4000辆。 尽管丰田、本田燃料电池汽车的性能指标已经非常领先,而且日本的加氢站数量超过100座,乘用车政府补贴大约为整车售价的1/4(这一补贴对相对不那么便利的市场还没有形成足够的吸引力)。但这种从产品出发、生产端主导的模式很难形成商业闭环,丰田开始将燃料电池的功能延展至商用汽车和船舶领域,并在北京与中国五大汽车集团和亿华通成立了合资公司。 相比汽车产业,日本的热电联产的推广就顺利得多,日本自 2005 年以来开始部署家庭用分布式氢燃料电池 Ene-Farm项目,截至2018年12月31日,共部署了292,654个商业Ene-Farm装置。 韩国模式:高额补贴+应用场景 韩国和日本一样,也是由国内汽车龙头企业主导氢能产业、配套企业参与的全产业链发展模式。 现代布局整车、系统、电堆和双极板,形成自给供应链;三星在膜电极领域积累深厚,专利数量位居世界前列;浦项制铁切入金属双极板;ILJIN Composite 开发了超轻复合氢气罐,采用碳纤维复合材料以及增强纳米复合材料内衬。 韩国的起步不算太早,但近年发展速度超过了日本和中国,政府对氢能可谓是“豪赌”。相比日本乘用车25%左右的补贴,韩国燃料电池汽车补贴比例超过售价的60%,加氢站补贴达建设费用的50%。2019年,韩国燃料电池汽车全球销售已经达到4987辆,超越日本列世界第一。 韩国政府在公交车、卡车方面也大力鼓励氢燃料电池的发展:2019年现代推出商用汽车,当年销售35辆公交车,到2022年这个数字将增加到2000辆,到2040年将增加到41000辆;从2021年起,公共部门将垃圾收集车和清扫车转换为氢卡车。 今年7月6日,现代汽车打造的全球首款量产燃料电池重型卡车——XCIENT Fuel Cell,首批10台车辆已启程运往瑞士,这批订单总共是50台XCIENT Fuel Cell燃料电池重卡,今年将陆续交付。这批卡车抵达瑞士后,将被交付给Hyundai Hydrogen Mobility公司——由现代汽车和瑞士专业氢能源解决方案企业H2 Energy于2019年9月正式成立的合资企业,该合资公司将把氢能卡车改装成冷藏货车等车型,推广应用于融合了超市及加油站的综合流通供应链和食品流通企业等应用领域。 同时,XCIENT Fuel Cell在瑞士将推出全新概念的移动出行服务形态:采用根据行驶里程来支付使用费(Pay-Per-Use)。该使用费中涵盖了充电费、维修费、保险费及定期保养费等与车辆行驶相关的各类费用。该服务形态建立一个全方位的氢能源生态系统,集车辆供应、客户企业、加氢站、氢能源生产等4大领域于一体,将卡车的生产、服务和应用场景相结合,可以在区域性线路上形成闭环,从而提高卡车运行路线与时间的确定性,使得投资回报变得可以计算。 现代汽车雄心勃勃,他们计划将以出口瑞士为起点,陆续拓展至德国、荷兰、奥地利及挪威等地区,并逐步覆盖整个欧洲全境,同时进一步进军北美商用车市场。 德国模式:进口车辆试运行搭建基础建设 德国秉承了稳打稳扎的传统作风。宝马、奔驰、奥迪等汽车制造商和核心供应商在氢能和燃料电池乘用车的开发也投入了大量的研发,也积累了很深的技术基础,拥有SFC Energy、巴斯夫、Linde、H2 MOBILITY等成熟的氢燃料配套商和运营商,而且推出了自己的FCV概念车。 不过在产业化进程中面对“鸡生蛋还是蛋生鸡”的问题他们一开始选择了通过进口车来建加氢站,并进行商业化试运行。2017年在德国汉堡和慕尼黑等地,已经有燃料电池轿车在共享出租车的公司旗下提供租赁服务,目前,德国境内约有500辆氢能源家用汽车。 当前,德国加氢站建设进入高速发展阶段,加氢站数量超过美国,成为全球拥有加氢基础设施第二多的国家。德国在运营加氢站数量达74座,规划建设加氢站26座,计划于2020年建成100座,到2025年400座,2030年1000座。 奔驰自20世纪80年代就开启燃料电池技术研发,他们推出一代又一代样车,但在投入产出上似乎更加精打细算,并不急于执行量产计划,近期发布的GenH2卡车计划样车在2023年交付客户使用,到2025年才开始量产。 美国模式:从应用场景出发形成局部闭环的商业模式 在目前中国关于氢能的各种会议上,美国企业的身影相对比较少。尽管美国上世纪70年代已经有了氢能源汽车,近期也出台了鼓励氢能发展的政策路线图,但自2018年以来,美国面对世界氢能产业的如火如荼的热情似乎相对比较淡定。 不过,美国的氢燃料电池车辆企业却一直牵动着全球氢燃料产业从业人员的视线,无论NIKOLA披露的信息如何被质疑,但没有人质疑他的商业模式。以全球知名的核心零部件和制氢供应商构建的整车体系,加上全美最大的卡车租赁服务公司,样车出来后拿到了超过10000辆的订单。 对行业来说,重要的不是NIKOLA的资本运作和订单,而是通过核心供应商构建车辆,保障卡车的品质和车辆运行可以计算的经济效益。相比乘用车所面临的运行范围的局限性,商用车可以在局部商业区域让系统运行相对高效。 即使NIKOLA最后走不出来,只要他们的性能指标没有超出当今世界氢燃料电池可以达到的指标,Trevor Milton为这个行业贡献的商业模型就是有价值的,而且目前现代推出的卡车显然也是参照了NIKOLA商业闭环的思路。 另一家美国氢能燃料电池的企业PLUG近期股价从1美元暴涨了18倍,达到 18.43美元。PLUG发现了一种将氢能源的优势最大化、劣势最小化的方法,即这项技术应用于高使用量、运行空间确定的工业终端市场,这些市场不需要大量的运输需求,比如电商模式下蓬勃发展的仓储搬运业务。 氢燃料电池叉车具有充电时间短(电池充电约15分钟;HFC不到5分钟)、减少了对自由空间的要求(锂电需要大量空间来存储电池; HFC需要的很少)、更高效的功率输出(由于电池损耗,操作功率减弱; HFC则不是这样)和更长的生命周期(电池每隔几年就要更换一次;HFC则不要)。 他们以叉车为切入点也正是遵循了局部市场商业闭环的商业逻辑。公司2020年中报称:“Plug Power已经部署了超过34000个燃料电池系统,并且已经成为最大的液态氢买家,在北美建立并运营了一个氢气网络。”目前,PLUG也还处于亏损中,但随着成本氢燃料电池成本和氢气的成本下降,公司前景值得期待。 中国模式:政府带单的区域市场模式 无论是风能、太阳能、还是电动汽车,在这些代表新能源的产业中,中国都占有非常重要的国际地位。因为中国经济发展与西方发达国家的差异性,我们在这些产业中也没有太多的原创技术,在这些非成熟产业中,中国在推动产业化的过程中发挥了重要的应用研究的作用,正是因为有中国的积极参与,才有了世界可再生能源成本的大幅下降。 同样,目前世界氢能产业的发展正处于从“实验室”到批量化生产的过渡阶段,这个阶段其实就是政府补贴,中国与其他国家最大的不同是,地方政府对新兴产业参与度非常高。因为政府在公交车、出租车的采购上享有主动权,对于处于补贴周期的氢能源产业,公交车具有固定的线路、工作时间长的特点,比较适合用氢燃料车。 目前中国已经有超过60个城市发布了氢燃料产业发展规划,从应用的角度来看,这种积极性是值得肯定的,不过如果所有公布规划的城市都要发展氢燃料汽车的话,这个产业就变得非常分散。我们可以看到车辆和加氢站的数据大幅增加,但过于分散的产业也会造成鱼龙混杂,一些地方政府可能会只有投入没有产出。 国内也有不同的商业模式。比如,上海已经形成了上下一体的氢能产业链,而且传统车企和高等院校、新兴企业共同参与,从制氢、核心零部件到下游运营几乎是全产业链覆盖;佛山氢能产业以燃料电池企业为主导,在政府支持下构建了燃料电池发动机、整车、及加氢站等氢燃料汽车产业链;北京是以燃料电池企业为核心、城市公交和特殊活动(奥运)为契机构建氢能产业链;而山东则凭借当地商用汽车上下游资源构建氢燃料产业生态链。 我们说,行业的发展通常有五个周期:发展阶段性周期、政策性经济周期、产品使用寿命周期、库存周期、产品迭代周期,对于非成熟产业来说,还多一个周期就是“政府补贴周期”。也就是说,处于补贴周期的时候,往往地方政府都会将当地的公交车交给自己扶持的企业,但一旦这个周期结束了,产业进入市场化运行,过于分散的产业就会出现大量亏损,直到一些企业退出。 从其他国家来看,德国、韩国、日本氢燃料汽车产业的带头者都是国内汽车龙头企业,这些汽车产业可以在国内国际整合上游核心供应商资源,并构建不同的商业模式;美国是燃料电池企业为主导构建商业生态体系的模式;加拿大专注于燃料电池技术;在中国市场,优势是补贴期间市场会快速成长,竞争有利于成本下降,劣势是资源过渡分散,造成重复建设和资源浪费。 因为产业基础不同,有些地区本身具有天然的优势,整车企业和零部件企业自身可以构建比较完整的产业链。而对于更多整车企业来说,他们不一定要选择本地的配套企业,而是在全世界选择更优的供应商,所以,地方政府应该与具有品牌影响力的整车企业探讨构建商业闭环的方案,避免招商引资引入只有投入没有产出的概念性和竞争力差的企业。