《BioRxiv,1月31日,Engineered unnatural ubiquitin for optimal detection of deubiquitinating enzymes》

  • 来源专题:COVID-19科研动态监测
  • 编译者: zhangzx
  • 发布时间:2020-02-01
  • Engineered unnatural ubiquitin for optimal detection of deubiquitinating enzymes

    Wioletta Rut, Mikolaj Zmudzinski, Scott J. Snipas, Miklos Bekes, Tony T. Huang, Marcin Drag

    doi: https://doi.org/10.1101/2020.01.30.926881

    This article is a preprint and has not been certified by peer review [what does this mean?].

    Abstract

    Deubiquitinating enzymes (DUBs) are responsible for removing ubiquitin (Ub) from its protein conjugates. DUBs have been implicated as attractive therapeutic targets in the treatment of viral diseases, neurodegenerative disorders and cancer. The lack of selective chemical tools for the exploration of these enzymes significantly impairs the determination of their roles in both normal and pathological states. Commercially available fluorogenic substrates are based on the C-terminal Ub motif or contain Ub coupled to a fluorophore (Z-LRGG-AMC, Ub-AMC); therefore, these substrates suffer from lack of selectivity. By using a hybrid combinatorial substrate library (HyCoSuL) and a defined P2 library containing a wide variety of nonproteinogenic amino acids, we established a full substrate specificity profile for two DUBs-MERS PLpro and human UCH-L3. Based on these results, we designed and synthesized Ub-based substrates and activity-based probes (ABPs) containing selected unnatural amino acids located in the C-terminal Ub motif. Biochemical analysis and cell-based experiments confirmed the activity and selectivity of engineered Ub-based substrates and probes. Using this approach, we propose that for any protease that recognizes Ub and Ub-like substrates, a highly active and selective unnatural substrate or probe can be engineered.

  • 原文来源:https://www.biorxiv.org/content/10.1101/2020.01.30.926881v1
相关报告
  • 《BioRxiv,3月31日,Fully human single-domain antibodies against SARS-CoV-2》

    • 来源专题:COVID-19科研动态监测
    • 编译者:zhangmin
    • 发布时间:2020-04-01
    • Fully human single-domain antibodies against SARS-CoV-2 Yanling Wu, Cheng Li, Shuai Xia, Xiaolong Tian, Zhi Wang, Yu Kong, Chenjian Gu, Rong Zhang, Chao Tu, Youhua Xie, Lu Lu, Shibo Jiang, Tianlei Ying doi: https://doi.org/10.1101/2020.03.30.015990 Abstract The COVID-19 pandemic is spreading rapidly, highlighting the urgent need for an efficient approach to rapidly develop therapeutics and prophylactics against SARS-CoV-2. We describe here the development of a phage-displayed single-domain antibody library by grafting naive CDRs into framework regions of an identified human germline IGHV allele. This enabled the isolation of high-affinity single-domain antibodies of fully human origin. The panning using SARS-CoV-2 RBD and S1 as antigens resulted in the identification of antibodies targeting five types of neutralizing or non-neutralizing epitopes on SARS-CoV-2 RBD. These fully human single-domain antibodies bound specifically to SARS-CoV-2 RBD with subnanomolar to low nanomolar affinities. *注,本文为预印本论文手稿,是未经同行评审的初步报告,其观点仅供科研同行交流,并不是结论性内容,请使用者谨慎使用.
  • 《BioRxiv,1月31日,Uncanny similarity of unique inserts in the 2019-nCoV spike protein to HIV-1 gp120 and Gag》

    • 来源专题:COVID-19科研动态监测
    • 编译者:zhangzx
    • 发布时间:2020-02-01
    • Uncanny similarity of unique inserts in the 2019-nCoV spike protein to HIV-1 gp120 and Gag Prashant Pradhan, Ashutosh Kumar Pandey, Akhilesh Mishra, Parul Gupta, Praveen Kumar Tripathi, Manoj Balakrishna Menon, James Gomes, Perumal Vivekanandan, Bishwajit Kundu doi: https://doi.org/10.1101/2020.01.30.927871 Abstract We are currently witnessing a major epidemic caused by the 2019 novel coronavirus (2019- nCoV). The evolution of 2019-nCoV remains elusive. We found 4 insertions in the spike glycoprotein (S) which are unique to the 2019-nCoV and are not present in other coronaviruses. Importantly, amino acid residues in all the 4 inserts have identity or similarity to those in the HIV-1 gp120 or HIV-1 Gag. Interestingly, despite the inserts being discontinuous on the primary amino acid sequence, 3D-modelling of the 2019-nCoV suggests that they converge to constitute the receptor binding site. The finding of 4 unique inserts in the 2019-nCoV, all of which have identity /similarity to amino acid residues in key structural proteins of HIV-1 is unlikely to be fortuitous in nature. This work provides yet unknown insights on 2019-nCoV and sheds light on the evolution and pathogenicity of this virus with important implications for diagnosis of this virus.