《磁场远程控制选择性生物催化》

  • 来源专题:纳米科技
  • 编译者: 郭文姣
  • 发布时间:2017-12-04
  • 许多医疗、生物技术和生物传感器的应用都依赖于有效的释放和释放活性物质。在这里,我们展示了一个平台,它探索了生物催化剂对生物材料在需求上的良好控制释放的生物催化剂的反应。这个平台结合了两种不同类型的核壳磁性纳米颗粒:一种含有酶,另一种是具有亚层的治疗(生物)化学物质。两种碳都被纳米粒子外壳的聚合物刷结构屏蔽,从而防止任何酶-底物相互作用。当一个相对较弱的外磁场被应用时,屏蔽屏障被克服,酶和底物被合并,并被迫在产生的奈米空间中相互作用。当酶降解底物时,合并的生物催化纳米颗粒释放出亚层结合的治疗药物。开发的平台提供了一个概念的证明,用于远程控制药物或(生物)化学物质使用非侵入性弱磁场的能量。

    ——文章发布于2017年11月20日

相关报告
  • 《远程控制活细胞内化学反应的纳米催化剂》

    • 来源专题:纳米科技
    • 编译者:郭文姣
    • 发布时间:2020-08-12
    • 在我们身体的生物反应中负责催化反应的酶很难用于诊断或治疗,因为它们只对某些分子起反应或稳定性低。许多研究人员预计,如果这些问题得到改善,或者如果人造催化剂被开发出来,通过满足体内的酶来产生协同效应,将会有诊断和治疗疾病的新方法。特别是,如果能够对外界刺激(如磁场)作出反应的人工催化剂得到开发,那么从体外远程控制生物反应的新治疗方法就可能成为现实。 由香港邮政化学系李苏教授领导的研究小组开发了一种名为magner的远程磁敏人工催化剂,该催化剂在活细胞内显示出很高的催化效率。这项研究作为国际纳米技术杂志《纳米快报》的封面补充论文发表。 该研究小组模拟了细胞内囊泡的结构,并在一个中空的二氧化硅纳米壳内合成了一个含有氧化铁纳米颗粒和钯催化剂的磁催化复合纳米反应器。 当磁纳米粒子遇到交变磁场时,内部的氧化铁纳米粒子会产生磁场致热,只激活钯催化剂而不提高外部温度。该研究小组成功地实现了高效的催化反应,将非荧光反应物转化为荧光产物,方法是在活细胞中植入磁器,然后施加交变磁场。研究小组还证实,催化剂mago - ner可以在很长一段时间内保持活性,不受细胞内生物分子的污染,不影响细胞的存活。 利用mago - ner,可以开发出人工合成分子或利用对人体无害的磁场在细胞内诱导化学反应等可以人为遥控细胞功能的诊断和治疗方法。 领导这项研究的李修教授解释说:“这项研究是利用我们实验室多年来开发的hallow纳米反应器材料的结果,它被视为一种创新的化学工具,将推动生物医学和生物研究。” 这项研究是在国家研究基金会的研究带头人计划(创造性研究)的支持下进行的。
  • 《前沿 | 激光控制纳米颗粒表面的催化反应,有望实现清洁能源生产的人为控制》

    • 来源专题:光电情报网信息监测服务平台
    • 编译者:husisi
    • 发布时间:2022-05-25
    • 控制纳米颗粒的强磁场是触发其表面靶向分子反应的关键,而激光可以实现对这种强磁场的控制。虽然先前的研究已经观察到激光可以诱导纳米颗粒表面分子的成键和解耦合,但是精确控制纳米表面反应并未实现。 激光脉冲场中的纳米粒子——特定波形和偏振态。在纳米颗粒的指定区域(黄色点)内,可控的电磁场诱导吸附表面的分子发生位置选择性光化学反应。通过对这些区域的分子分裂进行成像,以纳米分辨率对反应点位进行全光控制 近日,由慕尼黑大学Boris Bergues博士和马克斯•普朗克量子光学研究所Matthias Kling教授带领的国际研究团队与斯坦福大学合作,共同打破了观察现象与人为控制之间的壁垒。在分离的二氧化硅纳米颗粒表面,这些物理学家首次利用超短激光脉冲确定了光诱导的分子反应位置。 纳米粒子的表面非常热闹,熙熙攘攘:分子对接、化学结构溶解以及振动等景象。这些本征运动驱动了化学反应,物质发生变化,产生新物质。而该团队已经证明通过电磁场可以控制纳米宇宙中事件的发生。在单个纳米颗粒表面,他们利用高能的飞秒激光脉冲产生局域电磁场(1fs = 10-15 s)。 此外,通过反应纳米镜,物理学家能够以20 nm以上分辨率,对硅纳米颗粒表面的反应位置和分子分裂地区进行成像。因此,两个脉冲之间的时间延迟要求阿秒级的精度设置(1 as = 10-3 fs)。当与参数匹配的光相互作用,纳米颗粒的表面和吸附的分子在目标位置被电离,导致分子解离为不同碎片。 Matthias Kling教授说:“这种分子表面反应在纳米催化中起着重要作用,这可能是清洁能源产生的关键一环,特别是通过光催化分解水,产生氢气。”Boris Bergues博士补充道:“我们的研究结果也为追踪纳米颗粒上的光催化反应扫除了障碍,不仅具有纳米级空间分辨率,并且可以用飞秒时间分辨率追踪反应位置。这将在空间和时间维度上洞察详细的表面动态过程。” 物理学家希望这种方法应用于更多复杂的分离纳米材料,以上研究成果发表在期刊《Optica》上。