《CRISPR-Cpf1结合crRNA的复合物晶体结构》

  • 来源专题:转基因生物新品种培育
  • 编译者: 雷洁
  • 发布时间:2016-04-27
  • CRISPR-Cas系统是细菌编码的适应性免疫系统,该系统通过RNA引导的效应蛋白剪切病毒的DNA或者RNA从而抵抗病毒的感染。该系统之一的CRISPR-Cas9系统被用来作为可编程的基因编辑工具用于细胞内目的DNA的剪切、激活表达、修饰、突变等。由于CRISPR-Cas9系统能够在活细胞中高效地、便捷地“编辑”任何基因,作为科研、医疗等领域的强有力工具,已被广泛地应用于全世界的生物和医学实验室。

    刚刚发现的CRISPR-Cpf1系统是一类新型的CRISPR-Cas系统,能够在crRNA引导下在人类细胞内剪切目的DNA底物。而且,Cpf1本身也是一个具有序列特异性的RNase,这也是目前发现的唯一一个具有核酸序列特异性且同时具有DNase和RNase活性的核酸酶。Cpf1和Cas9很大的不同还在于:Cpf1仅需要一个拷贝的crRNA,而Cas9需要序列更长的tracrRNA和crRNA去识别、剪切底物DNA,较短的crRNA在转染细胞过程中将更高效;Cpf1和Cas9识别DNA底物上的模块(PAM)也不同;Cpf1剪切底物是通过粘性末端剪切,而Cas9是末端剪切,粘性末端剪切将更有利于基因编辑后的修复。

    在该项研究中,黄志伟团队首先解析了结合了crRNA的Cpf1复合物的晶体结构。非常意外的是,Cpf1并不是之前人们推测的二聚体状态,而是一个呈三角形的单体,位于该结构中间是一个带有正电荷的凹槽。crRNA通过发卡结构形成高度扭曲的构象紧密结合在Cpf1的核酸结合结构域,和底物DNA配对的crRNA 3'末端位于Cpf1凹槽的一端。和Cas9结合的sgRNA显著不同的是,Cpf1结合的crRNA的引导序列部分(guide sequence)并没有电子密度,这说明在没有底物结合的状态下这部分序列和Cpf1的结合比较松散。据黄志伟介绍,结构观察发现一个紧密结合crRNA的六水合镁离子对稳定crRNA构象激活Cpf1的催化活性非常关键。当然,我们也不能排除镁离子也同时直接参与了对底物的催化反应。通过比较Cpf1和Cas9复合物的结构发现,LHD区域推测可能是双链DNA底物结合的PAM区域。

    该研究发现Cpf1在没有crRNA结合的状态下处于松散的构象,crRNA的结合引起Cpf1发生显著的构象变化。与Cas9结合sgRNA极为不同的是,仅仅crRNA的重复序列部分(repeat sequence)就能引起Cpf1构象的巨大变化,这反映了这类短小的crRNA与Cas9结合的长sgRNA的识别机制的巨大差别。该结构显示来自于H843、 K852以及K869催化残基侧链上的氮原子位于一个平面上,同时和RNA A(+20)的磷酸基团形成氢键,该结构证据表明Cpf1剪切pre-crRNA成为crRNA是一个碱催化的反应。

  • 原文来源:http://www.nature.com/nature/journal/vaop/ncurrent/full/nature17944.html
相关报告
  • 《研究解析结核杆菌转录起始复合物的晶体结构》

    • 来源专题:生物安全网络监测与评估
    • 编译者:yanyf@mail.las.ac.cn
    • 发布时间:2019-03-15
    • 基因组的遗传信息得以表达,首先需要RNA polymerase (RNAP)以DNA为模板合成RNA。基因转录不仅是基因表达第一步,还是基因表达的主要调控步骤。对RNAP分子机器结构、运行机理以及调控机制的研究能够回答基因表达调控的基础生物学问题。在转录起始阶段,细菌的RNAP与转录起始σ因子形成复合物,依次执行启动子双链DNA的识别、解链以及RNA起始合成等关键步骤。细菌RNAP通过与多个σ因子结合特异性调控基因转录,其中Extra-Cytoplasmic Function(ECF)σ因子是细菌中种类最多的一类σ因子,它可以感受细菌胞内外环境变化,起始特异性的基因转录。ECF σ因子赋予细菌适应逆境的能力,对于致病菌的致病性和耐药性尤为重要。以结核分枝杆菌(Mycobacterium tuberculosis)为例,其RNAP分别与10种ECF σ因子结合,通过识别特异启动子序列启动相应基因表达,多个ECF σ因子与结核分枝杆菌的致病、侵染以及耐药直接相关。 3月11日,国际学术期刊《自然-通讯》(Nature communications)在线发表了中国科学院分子植物科学卓越创新中心/植物生理生态研究所/中国科学院合成生物学重点实验室张余研究组题为Structure basis for transcription initiation by bacterial ECF σ factors 的研究论文。该论文解析了两个结核分枝杆菌RNA聚合酶与σH的高分辨率转录起始复合物晶体结构。这两个首次解析的细菌RNAP与ECF σ因子的复合物结构回答了以下几个关键问题:1)ECF σ因子与RNAP 组装成全酶的方式与housekeeping σ因子类似,特别是ECF σ因子连接σ2和σ4结构域的linker区域,虽然其序列上与housekeeping σ因子没有任何的相似性,但是该linker区域与RNAP结合方式与housekeeping σ因子的σ3.2结构域类似,均结合到RNA聚合酶的活性中心,在转录起始过程中起着至关重要的作用;2)ECF σ因子采用独特的机制打开启动子双链DNA形成转录泡;3)ECF σ因子采用独特的方式结合单链的启动子DNA -10区的保守序列,通过对比RNAP-σH全酶以及RNAP-σH-DNA的两个复合物结构,张余课题组发现ECF σ因子采用Induced-Fit方式结合解链的启动子DNA,而housekeeping σ因子识别启动子采用Lock-and-Key的模式。两种模式的区别在于Induced-Fit的方式只能结合正确的启动子DNA序列,因为只有正确的启动子DNA序列才能够诱导DNA的结合口袋打开,该方式保证了ECF σ因子转录起始的专一性;而Lock-and-Key的方式能够容忍一定的启动子DNA序列差异,从而保证了housekeeping σ因子的转录起始的高效性和广泛性。该研究揭示了细菌ECF σ因子转录起始的结构基础以及分子机制,为基于ECF σ因子的合成生物学正交转录元件设计提供了理论基础,为靶向细菌RNAP的抗生素发现提供了新的思路。 ——文章发布于2019-03-14
  • 《甲肝病毒与中和性抗体复合物三维结构解析取得进展》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:黄翠
    • 发布时间:2017-01-16
    • 2017年1月10日,《PNAS》在线发表了中国科学院生物物理研究所饶子和课题组和牛津大学David Stuart课题组合作的研究论文 “Potent neutralization of Hepatitis A virus reveals a receptor mimic mechanism and the receptor recognition site”,解析了甲肝病毒与其中和性抗体Fab复合物精细三维结构,通过病毒学和细胞生物学实验证明:该抗体不仅能够阻断HAV与其受体TIM-1分子的相互作用,还干扰了HAV病毒正常的脱衣壳过程,揭示了一种“Receptor Mimic”的中和机制,为抗病毒药物研发提供重要信息。    全球每年仍然有140万甲型肝炎病毒(HAV)感染病例,主要爆发于发展中国家。HAV病毒属于小RNA病毒科肝炎病毒属,尽管HAV病毒是较古老的病毒,虽然其灭活病毒制备的疫苗上市多年,但是仍然很多科学问题尚未研究清楚。2015年饶子和研究团队解析了HAV全病毒颗粒的晶体结构,揭示了HAV独有的结构特性、极强的稳定性和小RNA病毒的进化关系。然而,HAV的受体结合位点以及具有极强稳定性的病毒是如何发生脱衣壳的分子机制还是不清楚。   本研究结合低温冷冻电镜技术、X射线晶体学和病毒学技术,解析了HAV病毒实心颗粒(3.4埃,约4500颗粒)、HAV病毒空心颗粒(3.9埃,约4000颗粒)和HAV病毒实心颗粒与抗体复合物(4.1埃,约1500颗粒)以及中和性抗体R10 Fab的晶体结构,确定了精细抗原表位,且该抗原表位在6株人类甲型肝炎病毒均高度保守。R10结合在病毒五次轴一圈正电荷富集的区域,该区域被实验证明为TIM-1分子mucin domain糖链结合的位置;此外R10的轻链与TIM-1分子Ig V domain 有很高的结构相似性。结合功能性数据结果:R10能够阻断HAV分子与TIM-1分子的结合和干扰HAV脱衣壳的特性,从结构和功能上提出了一种“受体模拟”的中和机制。