《英国科学家开发可逆的高能量密度阴极材料锂离子电池》

  • 来源专题:能源情报网信息监测服务平台
  • 编译者: guokm
  • 发布时间:2021-03-12
  • 英国的科学家们开发了一个模型来解释利用锂离子电池某些阴极材料中的氧化还原反应的挑战。基于他们对该理解反应的改善,他们提出了几种可能的进一步研究路线,以避免不必要的反应,并开发可逆的高能量密度阴极材料。

    自2000年初以来,富锂正极材料一直是从事储能工作的科学家们感兴趣的领域。在这些材料中,氧化还原反应已被证明可以在氧化物离子以及过渡金属离子中存储额外的电荷——有可能提高材料的储能容量。

    然而当集成到电池中时,这种阴极材料在第一次充电时就会发生不可逆的结构变化,立即降低其后续电压。而这些结构变化背后的机制一直让科学家们摸不着头脑,阻碍了材料的进一步发展。有鉴于此,英国的法拉第研究所开始观察这些阴极在工作中的结构变化。

    法拉第研究所首席科学家Peter Bruce说:“在对锂离子电池能量密度进行渐进式改进这一日益艰难的探索中,能够利用氧化还原阴极的潜力及其相对于目前商业化使用的富镍阴极所带来的更大改进,具有潜在的重要意义。对氧化还原的基本机制的深入理解是为缓解此类材料目前的局限性的策略提供信息的重要一步,使其潜在的商业用途离现实更近了一步。”

    利用英国钻石光源设施的X射线成像技术,该小组能够确认驱动第一次充电后电压损失的氧气的变化,还开发了一个解释整个过程的模型。

    巴斯大学和CATMAT首席研究员Saiful Islam教授说:“计算建模已经证明,分子氧的演化既解释了观察到的电化学反应。第一次放电时电压的降低,也解释了观察到的结构变化,由分子氧在材料体积内的容纳所解释。这种将分子氧和电压损失联系在一起的单一统一模型,使研究人员能够提出避免氧化还原引起的不稳定性的实用策略,为实现更可逆的高能量密度锂离子阴极提供潜在的途径。”

  • 原文来源:https://newenergy.in-en.com/
相关报告
  • 《美研发可实现高能量密度锂电池的有机阴极材料》

    • 来源专题:中国科学院文献情报先进能源知识资源中心 |领域情报网
    • 编译者:guokm
    • 发布时间:2019-07-10
    • 据报道,美国能源部(DOE)布鲁克海文国家实验室(Brookhaven National Laboratory)为锂电池设计了一种新型有机阴极材料。该材料以硫为核心,与锂电池中传统的阴极材料相比,能量密度更高、更具成本效益且更环保。 智能手机和电动汽车等日常生活用品都需要锂电池提供能量,而随着人们对此类产品的需求不断增长,科学家们一直在研究如何优化阴极材料,以提升锂电池系统的整体性能。 除了解决电池系统面临的能量挑战,布鲁克海文国家实验室的科学家还在研究可持续性电池的材料设计。为了寻找可提供高能量密度的可持续性阴极材料,科学家们选择了一种安全和储量丰富的元素 – 硫。 美国能源部布鲁克海文科学用户设施办公室国家同步光源二部(NSLS-II)科学家表示:“硫可以形成很多键,即能够抓住更多锂,从而增强能量密度。而且硫也比阴极材料中的传统元素轻,因而可让电动汽车具备更长的续航里程。” 研究人员在设计该新阴极材料时,选择了一种由碳、氢、硫和氧组成的有机二硫化合物,而不是传统锂电池中重金属,重金属不是很环保。但是虽然硫电池更安全、能量密度更高,但是也会面临着其他挑战。 Shadike表示:“当电池充放电的时候,硫会变成一种不好的复合物,溶解在电解质中,并扩散至整个电池,引起不良反应。我们设计了一种阴极材料,可让硫原子附着在一个有机支柱上,从而让硫稳定。” 研究人员表示,该项研究可提升高性能锂电池的性能,此类锂电池使用以硫为核心的阴极材料。
  • 《科学家将开发大规模储能电池技术》

    • 来源专题:中国科学院文献情报先进能源知识资源中心 |领域情报网
    • 编译者:guokm
    • 发布时间:2019-10-29
    • 随着电动车和新能源储能需求上升,业界期待更好的电池技术,其中液流电池在大规模储能系统方面具有很好前景。英国帝国理工学院26日表示,该校学者已获得欧盟资金资助,开发新一代液流电池技术。   帝国理工学院宋启磊博士获得了欧洲研究理事会科研启动基金总值150万欧元(约合160万美元)的项目资助。他的团队将与爱丁堡大学、剑桥大学以及欧洲和中国的机构合作开发这种电池技术。   宋启磊向新华社记者介绍说:“传统的锂离子电池是把电解液和电极材料封装起来,有机电解液热稳定性受到限制,容易发生爆燃,安全性受限;相比之下,液流电池将可以充放电的电解液材料和电堆单元解耦,这样正负极电解液可以单独储存在容器中,然后通过泵输送到电池内部实现充放电,安全性高,能量可长久储存,非常适合大规模的储能系统应用。”   当前,比较常见的液流电池是全钒液流电池,这种电池采用的是商业化的离子交换膜和钒材料,但活性材料和隔膜的成本都很高,限制了液流电池的大规模使用。宋启磊在帝国理工学院的实验室中向记者展示了液流电池的关键组成部分——隔膜。这种材料的性能显著制约着液流电池性能和生产成本等因素。   他说:“我们希望开发新型纳米多孔隔膜材料和低成本的电解质材料,通过分子设计从根本上提高膜的离子传导能力和选择性,结合纳米加工技术制备纳米膜,集成新型的电解质材料,有望开发下一代新型、廉价、环保、高能量密度的液流电池技术。”   据团队介绍,新型膜材料技术不但可用于电池,未来在污水处理、气体净化等能源与环保领域也会有很好的应用前景。