有效地识别学科交叉文献,不仅有助于及时把握学科交叉的研究态势、实时跟踪学科交叉地带的科研活动,还能为科研决策提供有力支持.本文根据科技文献蕴含的语义交叉性,提出一种基于改进的深度学习模型的学科交叉文献识别方法.首先,通过"文本合并"获得用于学科交叉文献识别的训练数据集;其次,提出一种改进的基于深度学习的文本分类模型,并在训练集上进行模型训练;最后,基于训练好的模型,对待分析的科技文献是否为学科交叉文献进行判别.在"牙科材料学"和"计算生物学"两个数据集上,对本文方法进行实证研究.结果表明,本文方法在学科交叉文献识别上具有较好的有效性,在两个数据集上计算得到的AUC(area under the curve)值分别达到0.741和0.966.与传统的基于深度学习的文本分类方法相比,本文方法可以在不依赖任何交叉学科先验知识的情况下,基于已有的非学科交叉文献训练学科交叉文献识别模型,从而能够在新的科技文献出现时,准确地判别其是否为学科交叉文献,实现有发展潜力的前沿交叉领域的实时监测.同时,学科交叉文献识别的效果也得到了较大幅度的提高.