《事件驱动型人工智能视觉开源库》

  • 来源专题:宽带移动通信
  • 编译者: 张卓然
  • 发布时间:2021-05-21
  • Prophesee公司的事件驱动型开发环境增加了关键的开放源模块和一个训练数据的数据库。

    法国人工智能开发商Prophesee发布了一套关键的开源软件模块和一套事件驱动型机器学习工具,例如光流和物体检测。

    这家总部位于巴黎的公司正在向开发人员提供业界最大的基于高清事件的数据集,名为OpenEB,将这作为Metavision智能套件的一部分,供开发人员免费下载。这有助于开发人员使用事件驱动型的机器学习方法,机器学习是变化触发的,而不是神经网络框架触发的。

    • 第一批神经形态的人工智能摄影船只

    最新版本增加了一套扩展的开发工具和软件,用于设计带有事件驱动型机器学习的工业视觉系统。该套件现在包括近100种算法、67个代码示例和11个用于加速开发过程的用例专用应用程序模块。OpenEB的开源模块可通过Github(面向开源及私有软件项目的托管平台)获得,将使设计师能够构建自定义插件,并且确保与Metavision智能套件的兼容性,用于开发基于事件的系统。这为开发人员提供了一个分享机器视觉生态系统软件组件的平台。

    “我们希望制定机器视觉生态系统的开放技术标准,使可访问性和互操作性达到新的水平,”Prophesee公司的首席执行官和联合创始人卢卡·维尔说道。“我们的方法为以基于事件的技术为中心的朝阳生态系统提供了一个丰富的开放基础和一个强大的开发框架。这包括我们多年来收集的既广泛又可靠的数据,以及利用我们在各种特定用途方面的专业技术知识来加速客户专用系统开发的应用程序模块。”

    OpenEB数据库为摄像机制造商及其客户提供了一种标准的基于事件的数据格式。Metavision智能套件的开源模型使摄像机制造商及其客户的生态系统实现兼容。根据开源许可证发布一些关键模块可以加速定制插件的创建,同时确保与摄像机制造商底层硬件的兼容性。

    从Prophesee在过去四年中创建的实序列数据集开始,这个开发环境为提供了一个完整的平台来快速开发机器学习应用程序。然后,开发人员使用各种工具来指导神经网络模型的开发,不仅对物体检测的监督训练任务进行基于事件的推理,而且还对光流自监督训练进行基于事件的推理,所有这些都针对基于事件的视觉进行了优化。此外,开发人员还可以使用提供的基于事件的模拟器轻松创建自己的模型或利用其现有的基于框架的数据集和模型,并且用基于事件的视觉对它们进行改进。

    • 为了测试无人驾驶汽车,推出了全球最大的公共数据库

    对于能用基于事件的视觉进行加强的关键工艺,Metavision智能套件添加了即时可用的新应用程序。这些包括:

    • 颗粒大小监测:为了确保更好地控制工艺流程,在生产线上以高达99.9%的统计精度统计和测量以极高速度(高达5万像素/秒)通过视场的。
    • 喷头监测。实时监控液体分配的速度和质量。检测和统计高速喷头,支持高达500赫兹的喷头分配,并且在分配器上发生错误时自动生成警报。
    • 小边特征跟踪。通过利用基于事件的传感器提供的低数据速率和稀疏信息,以较低的计算能力实现超强健的3D物体的实时跟踪。
相关报告
  • 《机器视觉和人工智能在现代制造中的关键作用》

    • 来源专题:智能制造
    • 编译者:icad
    • 发布时间:2024-02-28
    •   在竞争日益激烈和监管日益严格的环境中,机器视觉(MV)解决方案对于制造商来说变得至关重要。在严格的监管要求、创新的制造技术和严重的劳动力短缺的推动下,该行业正在转向技术解决方案。   人工智能在MV中的重要性与日俱增   将人工智能集成到机器视觉解决方案中代表着制造业的重大转变。预测质量控制机器视觉市场将出现显着增长,预计将从2023年的23亿美元增长到2028年的72亿美元。这种增长轨迹强调了人工智能在现代制造业中的关键作用,其驱动力是其增强和增强的能力传统的中压系统。   人工智能在机器视觉领域的优势   将人工智能(AI)集成到制造业的机器视觉(MV)中可带来一系列变革性优势,重塑工业质量控制的格局。最大的优势之一是提高了识别缺陷的准确性和精确度。人工智能算法擅长处理视觉数据,大大减少错误并确保高精度。这种准确性对于保持产品质量标准的一致性至关重要。   另一个关键优势是检查速度的显着提高。AI驱动的MV系统可以实时分析视觉数据,从而在不影响质量的情况下实现更快的检测速度。这种高速处理对于维持高效的生产线和支持高吞吐量的制造环境至关重要。   人工智能还提供了卓越的适应性和灵活性。它可以从新数据中学习,使其适应不同的产品或制造环境。这种学习能力允许根据特定的制造需求和要求进行定制,使人工智能成为制造武器库中令人难以置信的多功能工具。   此外,从长远来看,人工智能在MV中的集成可以带来显着的成本效益。通过减少材料浪费并最大限度地减少手动检查的需要,MV中的人工智能可以节省大量劳动力成本。此外,它还通过减少潜在危险环境中的人为干预需求并减轻工人重复性任务的压力来增强安全性和人体工程学。   运营的可扩展性是另一个重要优势。AI驱动的MV系统可以轻松扩展或适应不同的生产线,从而灵活地响应产品设计或制造方法的变化。人工智能提供的丰富的数据驱动见解补充了这种可扩展性。通过分析大量数据,人工智能可以识别趋势和模式,帮助进行预测性维护并提高制造效率。   最后,在MV中采用人工智能可以为制造商提供竞争优势。它将他们定位为创新和技术的领导者,从而能够更快地适应市场需求和变化。环境效益进一步增强了这种竞争优势,因为人工智能优化的流程通过资源优化和能源效率有助于实现更可持续的制造实践。   要点:   ● 提高缺陷检测的准确性和精确度。   ● 提高检测速度以实现高效生产。   ● 对不同制造环境的适应性和灵活性。   ● 长期节省成本并提高安全性。   ● 可扩展性和丰富的数据驱动见解。   ● 竞争优势和环境效益。   人工智能与机器视觉集成的挑战和限制   尽管有这些优势,但在制造中将人工智能与机器视觉相结合也并非没有挑战。最令人畏惧的问题之一是高昂的初始成本和投资回报率(ROI)的不确定性。AI-MV系统的部署需要对先进硬件和软件进行大量资本投资。此外,制造商经常面临投资回报率的不确定性,尤其是当生产力提高或缺陷减少等效益可能需要一段时间才能显现出来时。   另一个重大挑战是将这些先进系统与现有制造基础设施集成。旧设备和软件的兼容性问题可能会造成相当大的障碍,而重新配置现有工作流程以适应AI-MV系统可能会扰乱生产流程。   对技术专业知识的需求是另一个障碍。通常缺乏能够操作和维护这些复杂系统的熟练人员。此外,人工智能技术的快速发展需要对劳动力进行持续培训和提高技能,从而加剧了资源紧张。   数据隐私和安全问题也很突出。AI-MV系统对数据的依赖日益增加,引发了数据漏洞问题以及遵守严格数据保护法规的需要。此外,维持系统可靠性和诊断人工智能驱动系统中的问题的复杂性可能会导致生产延迟和质量问题。   可扩展性和灵活性问题也带来了挑战。人工智能模型可能难以快速适应产品设计或制造流程的变化,需要额外的投资和再培训。人工智能和机器视觉技术缺乏标准化可能会导致互操作性问题和对特定供应商的依赖,从而限制制造商的灵活性。   人工智能的“黑匣子”性质是另一个严峻的挑战。人工智能决策过程缺乏透明度可能会导致信任问题,尤其是在质量控制和监管合规性至关重要的行业。由于训练人工智能模型对质量数据的依赖,这一问题变得更加复杂。数据不充分或有偏差可能会导致人工智能预测不准确,从而破坏系统的有效性。   要点:   ● 初始成本高,投资回报率不确定。   ● 与现有系统的复杂集成。   ● 需要技术专业知识和持续培训。   ● 数据隐私、安全问题和系统可靠性问题。   ● 可扩展性和灵活性的挑战。   ● 人工智能决策缺乏标准化和透明度。   未来展望与创新   展望未来,持续的创新有望进一步增强这些技术,使它们更具适应性、更高效,并且更能融入制造流程。随着人工智能在质量控制方面的优势变得更加明显,其在制造业的采用将继续增长。这种增长不仅仅是市场的扩大,更是技术本身的演进和完善。制造商越来越多地寻求人工智能增强的MV解决方案来应对现代生产环境的挑战。   将人工智能集成到机器视觉中正迅速成为制造业的关键组成部分。这项技术正在改变现有流程并为质量和效率设定新标准。随着市场不断扩大和发展,人工智能在机器视觉中的作用变得越来越重要,有望解决当前的挑战并塑造制造业的未来。 
  • 《脑启发设计:人工智能的进化之路》

    • 来源专题:人工智能
    • 编译者:高楠
    • 发布时间:2024-07-08
    • 作者:微软亚洲研究院 编者按:你可以用左手(不常用的那只手)的小指与食指拿起一件物品么?         试完你是不是发现自己竟然可以毫不费力地用自己不常用的手中,两根使用频率相对较低的手指,做一个不常做的动作。这就是人类大脑不可思议之处——无需经过特别的训练,大脑就能够在短时间内以低功耗的方式控制身体完成各种复杂行为,甚至是全新的动作。相比之下,人工智能虽然是人类智慧的产物,但在很多方面还远不及人类大脑。 为此,微软亚洲研究院(上海)团队的研究员们从理解大脑结构与活动中获得灵感,开发了一系列涵盖大脑学习、计算过程不同层级的创新技术,包括模仿脑神经回路连接方式,可高效处理众多任务的 CircuitNet 神经回路网络;可应用于时间序列预测,更适配神经拟态芯片的新型 SNN(脉冲神经网络)框架和策略;以及可为具身智能提供理论指导的贝叶斯行为框架。这些探索为未来的人工智能技术发展提供了新的可能。         从能耗的角度来看,人类大脑只需要大约20瓦的功率即可维持运转,这约等于一个节能灯泡的功耗。但随着人工智能大模型参数和规模的增大,其能源需求远高于传统的数据中心。主流的大语言模型训练过程预计会消耗上千兆瓦的电力,相当于数百个家庭一年的用电量。这种能源消耗的增长趋势显然不利于人工智能技术的可持续发展。那么如何通过新的处理机制解决能耗问题,就成了信息科学领域一个紧迫且前沿的挑战。《千脑智能》一书为我们提供了启示:“要创造出真正智能的机器,我们首先需要对大脑进行逆向工程。我们研究大脑,不仅是为了理解它的工作原理,更是为了探索智能的本质。”其实,人工智能本身就是人类对大脑探索的产物,在计算机诞生之初,人们就已经利用神经连接模式+数字计算的方式模拟大脑。但受限于当时的算力和人们对大脑粗浅的认知,人工智能发展非常缓慢,甚至一度被束之高阁。             近几十年来,随着神经科学家对大脑结构的深入理解和计算资源及相关技术的增强,以脑启发为核心的“人工智能文艺复兴”也掀起了新一轮热潮,促使科研人员重新定位大脑机制对人工智能的作用。来自微软亚洲研究院(上海)的研究员们跨越计算机和脑科学专业知识,深入理解大脑的结构与行为活动,针对大脑学习和计算过程,从神经元、网络层和更高级别的系统层出发,分别设计研发了高性能的脉冲神经网络(SNN)、参数效率更高的回路神经网络(CircuitNet),以及提升决策效率的贝叶斯行为框架,促进了人工智能网络向着更低功耗、更高效率、更好性能的方向良性发展,同时也为具身智能发展提供了理论和方法。 CircuitNet:模拟大脑神经元连接,实现更低功耗与更高性能         人工神经网络(ANN)已经被广泛应用于人工智能的众多领域,包括自然语言处理、机器学习、语音识别和控制系统等。这些应用的成功,很大程度上得益于它们对大脑神经元工作模式的模仿。神经元是大脑最基本的单元,它们之间通过复杂的连接模式相互作用来传递和处理信息。但早期的人工神经网络设计相对简单,仅能模拟一两种连接模式。 随着神经科学的发展,人们发现大脑神经元的连接方式多种多样,其中有四种常见模式:前馈激励和抑制、反馈抑制、侧抑制和相互抑制。然而,现有的许多人工神经网络,如具有残差连接的网络,只能模拟前馈激励和抑制模式。即便是能够模拟循环模式的递归神经网络(RNN),在信息传入前也无法处理上游神经元间的复杂相互作用,从而影响了神经网络在不同机器学习任务中的表现。         生物神经网络与人工神经网络的整体连接模式也大不相同。生物神经网络的一个显著特点是局部密集连接与全局稀疏连接的结合。尽管单个神经元可以有数千个突触,但它们大多数位于一个脑区内,形成针对特定任务的功能集群。只有少数突触作为不同脑区之间的桥梁,延伸到其它功能集群,而人工神经网络通常不具备这样的特性。此外,人工神经网络中的许多参数也被证实是冗余的,增加了网络的复杂性。基于对大脑神经连接的新理解,研究员们提出了新的回路神经网络 CircuitNet,它能够模拟包括反馈和侧向模式在内的多种神经元连接模式。CircuitNet 的设计还借鉴了大脑神经元局部密集和全局稀疏连接的特性,通过不同电路模式单元(Circuit Motif Unit, CMU)的输入端和输出端的稀疏连接,实现了信号在不同 CMU 之间的多轮传输。实验结果表明,CircuitNet 在函数逼近、强化学习、图像分类和时间序列预测等任务中的表现超越了当前流行的神经网络架构。而且,在各种类型的任务中,CircuitNet 在达到与其它神经网络相同性能的同时,具有相当或更少的参数,展示了其在机器学习任务中的有效性和强大的泛化能力。 CircuitNet: A Generic Neural Network to Realize Universal Circuit Motif Modeling https://openreview.net/pdf?id=Fl9q5z40e3 让SNN网络更适用于时间序列预测任务的新框架         脉冲神经网络(SNN)因其能效高、事件驱动范式和生物学上的合理性,正逐渐受到业内的重视。SNN 的设计灵感来源于生物神经网络中神经元间的信息传递方式——神经元不是在每次迭代传播中都被激活,只有膜电位达到特定阈值时才被激活,进行信号传递。这种事件驱动机制使得 SNN 只在接收到有效刺激时才进行信息处理,从而避免了无效计算,极大地提高了运算效率和能效比。然而,研究员们发现,现有的 SNN 设计大多聚焦于其离散的事件驱动特性,有的会忽略其时间属性,有的则为了适应事件驱动范式过程,过度简化序列数据模式。这些方法虽然让 SNN 在图像分类、文本分类和序列图像分类任务上实现了与人工神经网络接近的性能,但并未充分发挥 SNN 在处理时间信号方面的潜力。研究员们认为,时间序列预测是 SNN 一个理想的应用场景。作为现实数据分析的重要组成部分,时间序列预测广泛应用于交通、能源、医疗等领域,旨在基于按时间顺序排列的历史数据来预测未来。但是,将 SNN 应用于时间序列预测还面临两大挑战:         SNN 中脉冲值的离散特性与时间序列数据的浮点属性之间存在巨大的差异,需要一种有效的机制来减少在将浮点值转换为脉冲序列时的信息丢失和噪声。如何选择用于时序数据的 SNN 标准化模型目前还缺少一个指导方针,进而加剧了任务的复杂性,这就需要对 SNN 架构及其参数进行深入探索,以适应不同时间序列数据的特定特征。研究员们提出了一个用于时间序列预测任务的 SNN 框架。该框架充分利用了脉冲神经元在处理时间序列信息上的高效性,成功实现了时间序列数据与 SNN 之间的时间同步。研究员们还设计了两种编码层,可以将连续时间序列数据转换为有意义的脉冲序列。这之后,研究员们又利用多种脉冲化的时间序列模型对脉冲序列进行了建模,得到了最终的预测结果。         通过在多个时间序列预测基准集上的测试,研究员们证实了 SNN 方法在时间序列预测中的有效性。该方法不仅展现出与传统时间序列预测方法相媲美或更优的性能,而且显著降低了能耗。此外,在分析实验中,研究员们还展示了 SNN 如何捕获时间序列数据中的时间依赖性,并发现 SNN 确实能够模拟时间序列数据的内在动态。这项研究为 SNN 领域提供了一个既节能,又符合生物学原理的时间序列预测新方案。 Efficient and Effective Time-Series Forecasting with Spiking Neural Networks https://arxiv.org/pdf/2402.01533 大脑中枢模式发生器与位置编码双加持,让SNN序列预测更上一层楼          尽管 SNN 在多个领域取得了显著进展,但它们在适应不同类型任务时仍面临挑战。SNN 作为事件驱动的系统,缺乏有效机制来捕获索引信息、节奏模式和周期性数据,从而限制了它们处理自然语言和时间序列等数据模式的能力。而且,SNN 依赖于脉冲形式的通信,这使得并非所有适用于人工神经网络的深度学习技术都能直接迁移到 SNN 上。为了克服这些限制,研究员们进一步从生物神经学机制中汲取灵感,基于人类大脑中枢模式发生器(Central Pattern Generator, CPG)和位置编码(Positional Encoding,PE)技术,开发了针对 SNN 的新型位置编码技术 CPG-PE。         中枢模式发生器(CPG):在神经科学中,CPG 是一组能够在不需要节奏输入的情况下,产生有节奏的模式输出的神经元。这些神经回路位于脊髓和脑干中,负责产生控制运动、呼吸和咀嚼等重要活动的有节奏信号。位置编码(PE):PE 是人工神经网络中的一项关键技术,尤其在序列处理任务中尤为重要。通过为输入序列的每个元素赋予位置信息,PE 使神经网络能够识别序列中元素的顺序和相对位置。CPG 和 PE 都能产生周期性输出,CPG 是相对于时间的输出,而 PE 则是相对于位置的输出。研究员们将两者类比,使 CPG-PE 可以编码时间或空间的位置信息,预测神经信号的来源或位置。         在 Metr-la(洛杉矶高速公路平均交通速度数据)、Pems-bay(湾区平均交通速度数据)、Electricity(以千瓦时 kWh 测量的每小时电力消耗数据)和 Solar(太阳能发电数据)四个真实世界数据集上进行的时间序列预测实验表明,采用 CPG-PE 策略的 SNN 在时间序列分析方面显著优于没有 PE 特性的神经网络。同时,CPG-PE 可以无缝集成到任何能够处理序列的 SNN 中,理论上可以实现与 SNN 硬件的兼容,适配各类神经拟态芯片。 Advancing Spiking Neural Networks for Sequential Modeling with Central Pattern Generators https://arxiv.org/pdf/2405.14362 贝叶斯行为框架:为具身智能提供理论指导         在心理学和认知神经科学领域,以人类为代表的智能生物群体被认为会执行两类行为:习惯性行为和目标导向行为。习惯性行为是指为了最大化利益而自动执行的动作,无需意识思考或意图的参与,例如寻找食物和避免危险。目标导向行为是指为了实现特定目标而执行的动作,例如有计划地前往某个地点。传统上认为,在认知科学和机器学习中,习惯性行为和目标导向行为由两套独立的系统控制,因此在建模时,研究人员通常会为这两种行为设计独立的模型。         然而,微软亚洲研究院的研究员们认为,这两种系统应该更紧密地结合,实现协同学习和工作。尽管在大脑中这两种系统之间的相互作用尚未完全明了,但习惯性行为和目标导向行为共享着诸如脑干这样的下游神经回路。两种行为共享低级运动技能,且每个系统都可能利用对方学习到的高级动作。例如,习惯性行为虽然缺乏灵活性,但通过练习可以提供熟练的运动技能,这些技能可以被目标导向行为用于更复杂的任务规划。那么如何在保持两种行为差异的同时实现协同?为此,研究员们提出了一个基于变分贝叶斯方法的理论框架——贝叶斯行为(Bayesian Behavior)框架,用于理解感知运动学习中的行为。其核心创新在于引入了一个贝叶斯“意图”(intention)变量,从而有效地连接了习惯性行为与目标导向行为。习惯性行为由感官输入计算的意图先验分布驱动,无需具体目标。目标导向行为则由一个通过最小化变分自由能推断(active inference)的目标条件意图后验分布引导。         在视觉引导的感知运动任务中进行模拟实验的测试结果显示,贝叶斯行为框架所得出的结论与神经科学和心理学实验的观察数据相吻合。这一发现不仅为认知科学中“行为”的理解提供了新的视角,也为具身智能的构建提供了理论基础。例如,人类能够轻松地用左手食指和小指拿起东西,或者原地转圈,未来的具身智能也可能完成这种未曾学习过的动作,展现出更高的适应性和灵活性。 Synergizing Habits and Goals with Variational Bayes https://www.nature.com/articles/s41467-024-48577-7 该论文已在《自然-通讯》(Nature Communications)杂志上发表。 跨领域研究让人工智能向节能高效进化         从达尔文进化论的角度来看,现在的主流人工智能模型在未来可能会面临淘汰。在生物进化的过程中,物种的基因变异是繁殖下一代时的常态。那些有利于生物适应环境的变异,将通过环境的筛选,以“适者生存”的原则被保留下来。然而,将这一概念应用于人工智能时,我们会发现能耗问题并不利于人工智能的发展和“进化”。         借鉴人脑的工作原理,构建脑启发的人工智能,不失为促进人工智能技术向节能高效方向发展的有效途径。这一趋势已经引发了新的研究热潮,包括对大脑理解的研究、基于神经元构建新的语言模型、根据不同脑区功能设计的 MoE 架构等脑启发人工智能正蓬勃发展。在微软亚洲研究院进行脑启发式人工智能研究的过程中,研究员们更加体会到跨学科、跨领域专家协作支持的重要性。CircuitNet、SNN 时间序列框架、贝叶斯行为框架等创新成果的背后,凝聚了来自复旦大学、上海交通大学及日本冲绳科学技术大学院大学等机构的神经科学和脑科学专家的专业知识和贡献。未来,随着对大脑机理的深入理解和技术的不断创新,我们有望增进对智能本质的理解,构建出更加智能、高效且环保的人工智能技术,更好地服务于人类社会。