《Nature | μ型阿片受体细胞分别调控芬太尼成瘾正强化和负强化机制》

  • 编译者: 李康音
  • 发布时间:2024-05-26
  • 2024年5月22日,日内瓦大学Christian Lüscher通讯在Nature发表题为Distinct μ-opioid ensembles trigger positive and negative fentanyl reinforcement的文章,揭示了与芬太尼成瘾相关的正负强化机制的不同神经回路。

    芬太尼是一种强效的合成阿片类药物,一直处于持续的阿片类药物危机的前沿,导致了过量死亡和超高的成瘾率。该研究发现的核心是识别了腹侧被盖区(VTA)和中央杏仁核(CeA)中表达μ-阿片受体(μOR)的两个不同神经元群体。研究人员证明,VTA中表达μOR的GABA神经元是芬太尼的初始靶点,导致多巴胺神经元的去抑制和随后伏隔核(NAc)中的多巴胺释放。这一机制支撑了芬太尼使用带来的积极强化和欣快效果。

    这项研究还揭示了CeA中一个单独的表达μOR的神经元群体作为负强化的细胞触发因素。在戒断期间,这些神经元表现出更强的活性,这与跳跃和不动(immobility)等身体戒断症状的结束有时间相关。这些CeA神经元的光遗传学刺激诱导了厌恶行为,小鼠很容易学会按下杠杆来暂停刺激,这证明了这种神经元群体活动的厌恶性质。

    总之,这项研究为芬太尼成瘾的双重强化机制提供了一个全面的神经通路层面的理解。通过分析触发正强化和负强化的不同神经元集合,研究人员为开发有针对性的干预措施以减少芬太尼成瘾并促进康复奠定了基础。作者将CeA确定为诱导负强化的关键位点,挑战了戒断症状源于VTA适应的主流观点。

相关报告
  • 《Nature | μ型阿片受体的动态构象机制》

    • 来源专题:战略生物资源
    • 编译者:李康音
    • 发布时间:2024-04-14
    • 2024年4月10日,清华大学陈春来、斯坦福大学Brian K. Kobilka、加州大学洛杉矶分校Matthias Elgeti共同通讯在Nature发表题为Ligand efficacy modulates conformational dynamics of the μ-opioid receptor的文章,深入研究了μ-阿片受体这种重要的G蛋白偶联受体(GPCR)的复杂结构和动力学特性,其在疼痛管理和各种生理过程的调节中发挥着关键作用。 阿片受体是一类存在于人体神经系统中的蛋白质受体,对阿片类药物(如吗啡、哌替啶等)及内源性阿片肽(如内啡肽、外啡肽等)起作用。这些受体主要分布于中枢神经系统(如大脑和脊髓)以及周围神经系统中的神经元上。阿片受体有μ、κ、δ等多种类型。这项研究的重点是了解从拮抗剂到超效激动剂等不同配体的结合如何调节μ-阿片受体(μOR)的构象整合。通过结合包括DEER和smFRET等的尖端技术,研究人员发现了受体构象动力学及其对信号转导的影响的显著细节。其中一个关键发现是识别了TM6的特定构象状态,已知TM6在GPCR激活中起着关键作用。DEER揭示了六种不同构象状态的复杂集合,研究人员将其分为非活性(R1和R2)和活性(R3和R4)状态。重要的是,发现这些状态的相对群体受到结合配体性质的强烈影响,拮抗剂有利于非活性构象,而高效激动剂稳定活性状态。 此外,研究人员证明,受体下游转导子G蛋白和β-arrestin的结合可以进一步调节构象平衡。值得注意的是,G蛋白结合优先稳定R3活性状态,而β-arrestin结合与R3和R4活性状态表现出更混杂的相互作用。这些发现表明,受体的构象动力学在决定不同信号通路的信号偏向方面起着至关重要的作用。smFRET实验提供了对受体构象动力学更深入的了解。通过使用两种不同的荧光团对,研究人员能够捕捉受体内的快速(<100ms)和慢速(>100ms)构象转变。作者发现快速转变是配体依赖性的,FRET峰的位置与结合配体的功效相关。另一方面,缓慢的转变归因于受体的细胞内环2(ICL2)的结构变化,而ICL2对G蛋白的结合和激活至关重要。 研究人员通过检查GDP对μOR-G蛋白复合物的影响,进一步探索了受体的构象动力学和G蛋白偶联之间的相互作用。他们的研究结果表明,高效和超高效激动剂不仅促进了无核苷酸的μOR-G蛋白复合物的形成,而且降低了GDP的亲和力,从而促进了G蛋白的活化。相反,低效力的G蛋白偏向激动剂表现出更稳定的GDP结合的μOR-G蛋白复合物,为其降低的信号功效提供了解释。 总的来说,这项研究代表了整合结构生物学的一项成就,揭示了配体结合调节μ-阿片受体构象动力学的复杂而微妙的方式。通过揭示支配受体激活和信号转导的潜在结构变化,这项工作有可能为开发针对阿片受体系统的更具选择性和更安全的治疗剂提供信息。
  • 《Nature | 体内单细胞CRISPR筛选绘制了癌症中T细胞命运调控组》

    • 来源专题:战略生物资源
    • 编译者:李康音
    • 发布时间:2023-11-20
    • 本文内容转载自“ 生物世界”微信公众号。原文链接: https://mp.weixin.qq.com/s/6qgN_FdjPj-mPv3dT3i_TA 2023年11月16日,美国圣裘德儿童研究医院迟洪波团队在 Nature 期刊发表了题为Single-cell CRISPR screens in vivo map T cell fate regulomes in cancer 的研究论文。该研究使用单细胞CRIPSR筛选,在体内绘制了肿瘤T细胞命运调控网络。揭示了促使耗竭T细胞前体/祖细胞(Tpex)细胞退出静息状态以及增强终末耗竭T细胞(Tex)细胞增殖状态的关键调控转录因子,并用以改善肿瘤免疫疗法。 首先,研究人员发现Tpex细胞退出静息状态并连续分化为中间型Tex1细胞(有较强的功能和增殖能力的一群Tex细胞),这一过程由IKAROS和ETS1差异调控。IKAROS促进Tpex1(有较弱增殖能力的一群Tpex细胞)的代谢激活及其分化为Tpex2细胞(有较强增殖能力的一群Tpex细胞)。敲除IKAROS抑制了CTLs的功能,增加了肿瘤内CTLs的干细胞性的同时降低了细胞代谢以及mTORC1信号通路的活性,暗示IKAROS缺陷可能使细胞滞留在过度静止的状态。并且,敲除IKAROS导致的CTL细胞积累无法单独或响应ICB改善抗肿瘤免疫反应。相反,敲除ETS1通过增强mTORC1信号通路活性和代谢重编程来调控Tpex2到Tex1分化过程,并且在多个肿瘤模型中增强了过继细胞疗法(ACT)和免疫检查点阻断疗法(ICB)抗肿瘤效果,并且ETS1基因表达量与癌症患者对ICB的响应呈负相关。在机制上,研究人员揭示了TCF-1和BATF可以分别被IKAROS和ETS1负向调控,是IKAROS和ETS1在CTL细胞中的靶点。 其次,研究人员发现敲除RBPJ阻断了中间型Tex1向终末Tex2细胞(有较弱的功能和增殖能力的一群Tex细胞)分化,同时通过增加Tex细胞的增殖能力来扩大Tex1细胞累积。并且,敲除RBPJ在多个肿瘤模型中改善了ACT和ICB的抗肿瘤效果。另外,RBPJ基因的表达量与来自癌症患者CTLs的终末Tex分化以及癌症患者对免疫检查点阻滞疗法的低反应性正相关。在机制上, RBPJ通过抑制IRF1转录因子的活性来促进了中间型Tex1到终末型Tex2细胞的分化。因此,敲除RBPJ通过增强有较强功能和增殖能力的Tex1细胞的分化来改善ACT和ICB的抗肿瘤效果。 总的来说,这项研究揭示了肿瘤内CTLs分化和功能的多样性及关键的调控转录因子,并为整合CTLs细胞命运基因调控网络和改善肿瘤免疫反应的潜在靶点提供了一个系统框架。