《北京大学制备出O2构型的锰基富锂动力电池正极材料》

  • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
  • 编译者: 冯瑞华
  • 发布时间:2018-11-23
  • 在国家重点研发计划的支持下,北京大学夏定国教授团队开展新型高比能锰基正极材料研究,突破了掺杂、包覆、纳米形貌等传统改性方法的限制,将LiMO2相与单层Li2MnO3相复合制备出了一种O2构型的锰基富锂动力电池正极材料。这种正极材料具有400mAh/g以上的放电比容量和1380Wh/kg以上的比能量密度,为开发比能量大于500Wh/kg的新型锂离子电池提供了可能,是目前国内外已报道的具有最高比能量密度的锂离子电池锰基富锂正极材料。

    该研究为新型高比能量锂离子电池正极材料的设计思路提供了新的方向,并突破了国外层状锰基富锂材料专利(O3构型)的限制,对于我国锂离子动力电池产业的健康发展有重要意义。研究成果“A High-Capacity O2-Type Li-Rich Cathode Material with a Single-Layer Li2MnO3 Superstructure(一种具有单层Li2MnO3超结构的高容量O2构型富锂材料)”已于2018年3月在Advanced Materials(《先进材料》)上发表。

  • 原文来源:http://www.xincailiao.com/news/news_detail.aspx?id=341842
相关报告
  • 《北大在原位探测锂电池层状材料制备过程结构演化的研究取得进展》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2018-09-13
    • 锂离子电池(LIB)在便携式电子设备,电动车等领域有着广泛的用途。富Ni层状氧化物正极材料,由于能量密度高、成本低等特点,已成为最有应用前景的下一代LIB正极材料之一。然而,随着层状材料中Ni含量的增加,产生了许多相关的问题,如实际容量和理论容量相差大,热稳定性低,循环稳定性差等。 在高Ni层状材料中存在着独特的Li/Ni无序的现象,即,部分Li+离子占据了过渡金属(TM)层的3a位,而部分Ni2+离子占据了Li层的3b位。Ni2+在Li层的存在会极大阻碍了Li+离子的在充放电过程中的脱出和插入,从而降低材料的实际容量。因此,Li/Ni无序被认为是导致高Ni材料实际容量低的重要原因之一。长久以来,Li/Ni无序在合成过程中何时发生,为什么发生,这些疑问一直没有得到解答。 近日,北京大学深研院新材料学院潘锋教授课题组和美国Brookhaven国家实验室王峰教授课题组合作,针对这些问题通过同步辐射X射线原位探测锂电池富Ni层状氧化物正极材料在整个合成过程中的结构演化进行了深入系统的研究。研究中,采用多种同步辐射技术,包括X射线衍射(XRD),全散射(PDF)和吸收(XAS),在各种尺度下(长程和局域)对富Ni层状材料LiNi 0.77 Co 0.13 Co 0. 10 O 2 原位合成过程中的结构演化过程进行追踪。 " 图1 多模同步辐射X射线技术揭示高镍材料在合成过程中的长程拓扑相转变和局域多面体内的结构无序过程。 团队通过原位同步辐射XRD揭示了长程尺度上发生的从层状前驱体氢氧化物Ni 0.77 Co 0.13 Co 0. 10 (OH) 2 到层状氧化物LiNi 0.77 Co 0.13 Co 0. 10 O 2 的拓扑相转变过程,以及相伴发生的先Li/Ni无序再Li/Ni有序的局域结构变化过程;原位PDF和原位XAS相结合将局域八面体内的Li/Ni无序过程与过渡金属Ni/Co/Mn的氧化动力学关联起来,揭示了NiO 6 八面体的对称性破缺和重构是Li/Ni无序现象发生的根本原因。这一原位实验结果进一步被理论计算结果所验证。 这些发现揭示了高Ni层状材料结构无序的合成起源,为合成过程中降低甚至消除结构无序提供了理论指导,有望显著提升富镍材料的实际容量及能量密度。该工作近日发表国际在化学和材料领域的知名杂志在‘美国化学会志(Journal of American Chemical Society,DOI:10.1021/jacs.8b06150,影响因子为14.357)上。 该工作是在北京大学深圳研究生院新材料学院潘锋教授、美国Brookhaven国家实验室王峰教授、美国Argonne国家实验室Khlil Amine教授和美国国家同步辐射光源NSLS II白健明教授的共同指导下,由博士后张明建及相关人员一起完成。 .
  • 《南京大学:新型镁电池负极材料!》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2019-01-15
    • 采用金属镁作为负极的可充电镁电池具有资源丰富、理论比能量高、无锂枝晶生长、安全性好、价格低廉等潜在的优点。然而,由于二价Mg2 的极性较大、Mg2 嵌入到正极材料中的动力学缓慢等问题,严重制约了镁电池的实际性能。到目前为止,在镁电池中只有少数的金属/合金型或离子嵌入型负极材料表现出合适的放电容量和循环稳定性。 为了改善镁电池电极材料的综合性能,必需对其原子结构和表界面进行优化设计。电极材料中的晶格缺陷,例如氧空位,对于过渡金属氧化物的物理和化学性质有很大影响。电极材料中的氧空位可以促进电子和离子的传输,有效提高电池的电化学性能。 南京大学化学化工学院金钟教授和马晶教授团队密切合作,提出了一种新的原子取代方法,以超薄TiS2纳米片为前驱体来合成含有丰富氧空位(OVs)的超薄、多孔、黑色TiO2-x (B-TiO2-x)纳米片,用于镁电池负极材料。 图1. B-TiO2-x超薄纳米片的合成示意图、形貌和储镁性能。 实验结果和DFT理论计算均证实,B-TiO2-x电极材料中存在的大量OVs能够显著提高材料的导电性和提供大量的镁离子存储位点,并表现出了较快的电化学反应动力学和优异的比容量和循环稳定性。该工作证明利用缺陷工程策略可以有效改善镁电池电极材料的整体电化学性能。