《加州理工学院:超导超材料可促进复杂量子系统的进一步研究》

  • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
  • 编译者: 冯瑞华
  • 发布时间:2018-09-30
  • 传统的计算机将信息存储在一个比特中,比特是一个逻辑单元,它可以取0或1。量子计算机依赖于量子比特,这是它们的基本构建块。传统计算机中的比特编码单个值,即0或1。相比之下,量子位的状态可以同时具有0和1的值。这种特殊的性质,是量子物理基本定律的结果,导致了量子系统极具复杂性。

    量子计算是一个新兴的、快速发展的领域,它或许可以利用这种复杂性来解决传统计算机难以处理的各种问题。然而,量子计算的一个关键挑战是,它需要使大量的量子位来一起工作,目前来看这还很难实现,因为这要求量子避免与外部环境的相互作用,但这样将剥夺量子位的量子特性。

    Oskar Painter实验室,工程与应用科学系应用物理学教授John G Braun及逆行了一项最新研究,探索了超导超材料的应用以克服这一挑战。

    超材料是通过比光波长更小的比例组合多种组分材料而特别设计的,从而赋予它们操纵光粒子或光子行为的能力。超材料可用于反射、转动或聚焦光束。超材料也可以产生禁止光子传播的频带,即所谓的“光子带隙”。

    加州理工学院的研究小组,利用光子带隙在超导量子电路中捕获了微波光子,为未来量子计算机的建设创造了一项有前途的技术。

    “原则上,这是一种灵活可伸缩的衬底,可以在它上面构建用于互连某些类型量子位的复杂电路,”Painter说,他是这项研究的团队领导人,这项研究发表在9月12日的《自然通讯》杂志上。不仅可以进行量子比特之间的连通性的空间安排,而且还可以设计连接只发生在特定的期望频率。

    Painter和他的团队创建了一个由超导体薄膜组成的量子电路,这种材料能传输电流,并且在硅微芯片上几乎没有能量损失。这些超导图案将微波从微芯片的一部分传送到另一部分。然而,使系统工作在量子态的是使用所谓的约瑟夫森结,它由夹在两个超导电极之间的原子厚度的非导电层组成。约瑟夫森结产生微波光子源,这个源具有两个截然不同的孤立状态,就像原子的基态和激发电子态,它们参与光的发射,或者是量子计算的语言中一个量子位。

    Painter说:“超导量子电路允许人们使用微波电路进行基本的量子电动力学实验,微波电路看起来像是直接从手机上拿出来的。”我们相信,用超导超材料来增强这些电路可能使未来的量子计算技术成为可能,有了这些,人们才得以进一步研究更复杂的量子系统,这些系统超出了我们使用最强大的经典计算机模拟建模的能力。”

  • 原文来源:http://www.xincailiao.com/news/news_detail.aspx?id=291491
相关报告
  • 《介绍麻省理工学院材料研究实验室》

    • 来源专题:可再生能源
    • 编译者:pengh
    • 发布时间:2017-10-13
    • 材料加工中心(MPC)和材料科学与工程中心(CMSE)共同服务了150多名麻省理工学院的工程和科学研究人员,今天宣布他们的合并是麻省理工学院材料研究实验室。 麻省理工学院材料研究实验室(MRL)包括能源转换和储存的研究;量子材料;自旋电子学;光子学;金属;集成微系统;材料的可持续性;固态离子;复杂氧化物电子性质;biogels;和功能性纤维。“这些都是跨学科的话题,材料在其中扮演着关键的角色,”MRL主管卡尔v汤普森说,他是麻省理工学院材料科学与工程学院的斯塔夫罗斯萨拉帕塔斯教授。“我们的重点是科学发现,以及如何设计和制造能够改善性能的系统,或者使新方法能够解决现有的问题。” 该伙伴关系加入了材料加工中心广泛的材料研究领域,由工业、基金会和政府机构资助;材料科学与工程的基础科学、教育推广和共享实验设施,这些都是由美国国家科学基金会材料研究科学与工程中心(MRSEC)项目资助的。在截至6月30日的财政年度,联合研究的总规模为2150万美元。 “这两个成功的中心的合并将简化校园材料研究的组织,以提高有效合作的能力,”麻省理工学院的研究副总裁Maria Zuber说,他是地球物理教授。新中心将向Zuber汇报。 材料科学与工程专业副教授杰弗里。d.d.海滩已经被任命为MRL和首席研究员的副主任,接替TDK的高分子材料科学和工程教授Michael f.Rubner,他将在担任了16年的CMSE主任之后退休。 外部顾问委员会,其成员来自工业界、政府和学术界,以及由麻省理工学院教员组成的内部顾问委员会,将指导MRL。“材料研究实验室的形成是非常令人兴奋的,”MRL外部咨询委员会主席、桑迪亚国家实验室的执行官茱莉亚m菲利普斯说。“货币政策委员会和CMSE已经成为麻省理工学院杰出材料社区多年的支柱。将它们结合在一起将使它们达到下一个层次的协作,将杰出的研究与重要的工具和能力相结合,从而为MIT提供关键的连接。在麻省理工学院和它的工业合作伙伴和学术合作者之间,纳米技术的普及和增强的接口。” 麻省理工学院的MRL将与麻省理工学院合作。位于麻省理工学院校园中心的纳诺,将于2018年6月开放。汤普森说:“我们期待与他们合作,不仅是作为一个重要的合作伙伴,而且是一个好邻居。” 开创性的研究 MRL将受益于1998年的“完美镜像”技术在CMSE和MPC的长期研究突破,从而带来了一种新型的光纤手术和一个自旋的公司;OmniGuide手术;第一个锗激光是在2012年室温下运行的。汤普森说:“他们的本质是很难预测的,但我们能做的是创造一个环境,使研究取得突破性进展。”“在MPC和CMSE中,成功的模式是把对材料感兴趣的人聚集在一起,但有着不同的学科背景。我们单独做了,我们一起做,期望是我们会更有效地做这件事。” MRL支持麻省理工学院在美国三家制造业创新研究所的校园工作,第四种可能是在材料可持续性领域。目前的计划包括明天的轻量创新,美国制造集成光子学研究所,以及美国先进的功能纤维,以及基于氧化物的燃料电池材料和高效太阳能电池。?????? 年度材料日研讨会和海报会议将于10月11日星期三上午8点至下午6点举行。在Kresge礼堂(建筑W16)和斯特拉顿学生中心(建筑W20)。主题将是“材料研究领域的前沿”。除了麻省理工学院的教师研究报告外,还将有一个小组讨论,主要是麻省理工学院材料研究社区的高级领导人。海报会议包括来自多个领域的学生和博士后,他们在材料相关的研究上进行合作。 混合新旧 尽管凝聚态的物理学家们正在研究诸如磁性和光学驱动的拓扑半金属等二维材料的奇异状态的最新研究,但在冶金领域的研究也正在复兴。冶金学是材料科学的历史基础。例如,材料科学和工程主管Christopher A.Schuh开发了纳米结构的金属合金,以及约翰f.艾特利特的材料化学教授唐纳德r萨德威,开创了一种新型的金属电池,用于网格级的能量存储。“多年来,MPC工作人员的出色支持使我能够从我的资金中得到最多的支持。”对我来说,CMSE对其卓越的中央用户设施至关重要,”Sadoway说。“这两家公司的合并代表了麻省理工学院材料研究人员的一次重大整合。我期待着接下来会发生什么。” 跨学科的研究小组,将不同学科的教员集合在一起,是MRSEC的一个关键特征。每一组的核心都是一组基本的假设,旨在解决关键的科学问题,关于材料科学的一个重要的新兴领域。过去的项目主要集中在量子点、电池材料、功能纤维、集成的硅光子学以及许多其他的主题上。通过美国超导公司、OmniGuide外科手术、QD Vision和lu减号设备,由美国超导公司资助的研究产生了大约1100个新工作岗位。 Rubner说:“我们最大的遗产是将人们聚集在一起,创造出新的科学,然后让这些研究人员以可能对社会有益的方式来探索新的科学,以及开发新技术和发射公司。” 新的MRL副主任海滩的研究探索了复杂的纳米尺度结构,在这种结构中,不同材料——金属和氧化物——之间的相互作用,在自然材料中没有发现,这是新设备的基础,比如更快的磁存储器。“对于麻省理工学院的材料研究来说,这是一个激动人心的时刻。我对MRL将给我们的社区带来的机遇感到兴奋。”“通过提供一个协调的基础设施来支持基本的研究、教育、外展和工业活动,这一新的MRL将远远超过其各部分的总和。CMSE已经证明了它有能力使不同的研究团队在该领域的前沿开拓新的方向。我预计,MRL将进一步增强麻省理工学院这种协调工作的范围和影响。” 麻省理工学院材料研究实验室与七名成员组成的工业大学合作,由希望与麻省理工学院研究人员在创新材料加工研究和开发项目上更紧密合作的公司组成。汤普森说:“通过加入MPC和CMSE,我们将拥有一个更广泛的社区,我们还将拥有更广泛的研究课题,以吸引行业并形成新的合作伙伴关系。 ——文章发布于2017年10月10日
  • 《台湾大学、台积电与美国麻省理工学院开发出铋材料电极有望延续摩尔定律》

    • 来源专题:集成电路
    • 编译者:shenxiang
    • 发布时间:2021-05-26
    • 目前,半导体主流制程主要采用硅作为主流材料。然而,随着摩尔定律不断延伸,芯片制程不断缩小,芯片单位面积能容纳的电晶体数目,也将逼近半导体主流材料硅的物理极限,芯片的性能也很难再进一步提升。尽管一直以来科学界对二维材料寄予厚望,却苦于无法解决二维材料高电阻、及低电流等问题,以至于取代硅成为新兴半导体材料一事,始终是空中楼阁。 先进的超硅电子技术要求同时发现沟道材料和超低电阻触点。原子薄的二维半导体在实现高性能电子器件方面有很大的潜力。然而,由于金属诱导隙态(MIG)金属-半导体界面上的能量势垒从根本上导致高接触电阻和低电流传输能力,迄今为止限制了二维半导体晶体管的改进。 台湾大学、台积电与美国麻省理工学院使用半金属铋(Bi)材料制作二维材料的接触电极,可大幅降低电阻并提高电流,促进更小芯片制程的开发。 研究人员制作了半金属铋和半导电单层过渡金属二卤化物(TMD)之间的欧姆接触,其中MIG被充分抑制,TMD中的简并态在与铋接触时自发形成。通过这种方法,在单分子膜MoS2上实现了零肖特基势垒高度、123欧姆微米的接触电阻和1135微安/微米的通态电流密度,这两个值分别是有记录以来的最低值和最高值。研究人员还证明了在各种单分子膜半导体,包括MoS2,WS2和WSe2上可以形成良好的欧姆接触,接触电阻是二维半导体的一个重大改进,接近量子极限。这项技术揭示了高性能单层晶体管的潜力,这种晶体管与最先进的三维半导体不相上下,可以进一步缩小器件尺寸,扩展摩尔定律。 在这项工作中,麻省理工学院团队首先发现半金属铋(Bi)作为电极的可能性,随后台积电技术研究部门将铋沉积制程进行优化,台湾大学团队运用氦离子束微影系统将元件通道成功缩小至纳米尺寸。这项新技术的突破,将解决二维半导体进入产业界的主要问题,是集成电路能在后摩尔时代继续前进的重要技术。 此次利用半金属铋(Bi)作为二维材料的接触电极可谓是迈向1nm甚至更先进制程的关键一步。随着芯片制程的不断延伸,每突破一步都是非常困难,在未来1nm甚至1nm以下的工艺中,如何能够把控好性能与功耗之间的平衡是目前需要突破的一大技术瓶颈。 这项新技术的突破,将解决二维半导体进入产业界的主要问题,是集成电路能在后摩尔时代继续前进的重要技术。 图1 半金属半导体接触间隙态饱和的概念示意图 该研究成果发表在《Nature》,2021,593:211–217 (2021), 题目:“Ultralow contact resistance between semimetal and monolayer semiconductors”。