《不降低导电性 新型铝线抗拉强度提高50%》

  • 来源专题:中国科学院文献情报制造与材料知识资源中心—领域情报网
  • 编译者: 冯瑞华
  • 发布时间:2022-01-20
  • 记者获悉,历经五年的科学技术攻关,中国电力科学研究院有限公司科研人员研制出一种新型铝单线——梯度微结构半硬铝单线。在不降低半硬铝导电性能的前提下,将半硬铝单线的抗拉强度提高50%以上,突破了铝线强度和导电性相互掣肘的技术“瓶颈”。相关科研成果分别发表在国际知名学术期刊《Scripta Materialia》和《Materials Science & Engineering A》上。

      导线强度的提升有助于提高输电线路的技术经济性,节约铁塔钢材用量,降低炼钢产能的碳排放;导电性的提升有助于进一步降低线路电能损耗,降低发电燃煤的碳排放。架空导线用铝导体强度的提升通常伴随着导电性的降低。

      梯度微结构金属具有强度高且韧性好等优点,在国内外一直是金属材料科学研究的热点。中国电科院依托国家自然科学基金项目“高温和高因变率耦合条件下多级微结构铝导线的失稳机制”,开展机理研究,首次把梯度微结构引入至半硬铝单线中,通过自主研发的高低温预扭转试验平台,成功研制出多级梯度微结构半硬铝单线。多级梯度微结构的半硬铝单线实现了强度与导电性的协同提升,在保证半硬铝单线导电率达到国际退火铜标准(IACS)导电率的62.5%的前提下,在国内外首次突破了半硬铝单线拉伸强度110兆帕大关,达到了160兆帕。

      据了解,以档距500米的500千伏角钢直线塔为参考依据,在输电线路其他设计参数不变的前提下,铝线强度若提高10%,弧垂可减少9%,铁塔高度可降低1.3米,每基铁塔节约钢材6.5吨。据推算,在电力行业,该新型铝单线全面应用后每年可助力铁塔钢材节约650万吨、炼钢耗能减排二氧化碳1105万吨。

  • 原文来源:http://digitalpaper.stdaily.com/http_www.kjrb.com/kjrb/html/2022-01/13/content_528900.htm?div=-1
相关报告
  • 《《Carbon》:碳纳米管纤维强度超越凯夫拉 导电性首破10 MS/m》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2020-08-24
    • 说到最强纤维材料,或许你想到的是凯夫拉。没错,就是那个被称为“装甲卫士”的凯夫拉,由于刚柔并济现已广泛用于军事项目上。那如果说到导电最强的材料,或许你想到的是金属材料——银。但如果告诉你,现在有这样一种材料,强度胜过凯夫拉,导电接近铜的80%的纤维,你会是什么的表情呢?(此处自行添加黑人问号表情)没错,这样的材料已经诞生了。它不但性能优越,而且灵活性极好,重量轻。那么它是谁呢?它就是碳纳米管纤维(CNTF)。 目前,要想实现CNTF的广泛应用,就需要具有可控且可再生特性的大规模生产方法。当前比较流行的商业方法有,溶液纺丝法(简称SS-CNTF)、直接纺丝法(DS-CNTF)和阵列旋转纺丝法(AS-CNTF)。 由于溶液纺丝工艺将纤维生产与碳纳米管的生长分离开来,它允许原始碳纳米管纵横比和CNTF性能之间有明确的关联。碳纳米管原料的性能与宏观纤维的性能之间的基本联系为CNTF的发展指明了前进道路:即高结晶度、高纵横比和低杂质的CNTs。 近日,来自美国莱斯大学的Matteo Pasquali等研究者证明了,更高质量、更长的CNTs可通过溶液加工成CNTF,同时CNTF兼具有良好的力学、电气性能以及灵活性。研究者所制得的CNTFs的抗拉强度为4.2 GPa而凯夫拉为3.6 GPa。CNTFs的导电性提升到10.9MS / m,这是CNT纤维第一次突破MS / m,按照质量标准,该纤维的导电性约为铜的80%。该研究成果以题为“Improved Properties, Increased Production, and the Path to Broad Adoption of Carbon Nanotube Fibers”的论文发表在《Carbon》上。 【图文详解】 CNT里面长的啥样?研究者对碳纳米管原料进行了拉曼光谱分析。图1a显示了使用532 nm、633 nm和785 nm激发波长的G和D峰的代表性光谱。532 nm、633 nm和785 nm的平均G/D分别为56、85和54,表明了CNTs的高结晶度。拉曼光谱的径向呼吸模 (RBM)区域表明了存在0.8-2 nm的单壁和双壁CNTs(图1b)。而高分辨率透射电子显微镜(HR-TEM)也证实了这一结果(图1c),确定了平均直径为1.76 nm,平均为1.9壁。 CNT-CSA溶液的透射(图1d)和偏振光(图1e)显微镜显示,CNTs完全溶解,含有少量杂质,形成清晰的液晶。图1f显示了CNTF表面的典型扫描电子显微镜(SEM)图像,可用于评估形貌和测量平均直径。发现,纤维在轴向高度排列(图1g),平均直径为8.9 ± 0.9 μm。图1h显示了使用聚焦离子束铣削得到的CNTF截面的SEM图像。虽然纤维的直径不是完美的圆形,但纤维中充满了少量的空隙。 图1 对CNT原料的拉曼光谱研究 CNTFs有哪些特性呢?对纤维使用了ARES G2流变仪,得到其代表性拉伸测试曲线,如图2a所示。此外,通过拟合威布尔分布,分析了对纤维进行的每次断裂试验所获得的拉伸强度(图3b),可看到除了在低端的两个数据点,其他收集的数据是线性的。采用标准威布尔对其拉伸强度测定为4.2 ± 0.15 GPa。由拉伸应力曲线从0-0.2%的延伸率开始的斜率计算,得到其杨氏模量为260 ± 40 GPa。断裂伸长率平均为3.5 ± 0.65%,平均韧性为50 ± 14 J/g。纤维电导率采用HP34401-A四探针万用表测量得到,室温的平均电导率为10.9 ± 1.2 MS/m。此外,纤维从生产到提交本文的15个月期间,它们的抗性在实验室条件下是稳定的。 研究者使用稳态光纤加热方法测量了在300 K时的热导率为390 ± 60 W/m K,这与之前在由5 μm CNTs组成的SS-CNTF上的结果相媲美。研究分析表明,CNTS导热系数并没有随着的CNTs长度增加而增加,这表明热输运可能主要是碳纳米管内部输运,而不是碳纳米管之间的界面阻力。通过测量了每根纤维的悬浮长度,其值在2.9~3.2 mm之间。热模拟表明,纤维的对流损失和辐射损失可以忽略不计。 图2 性能测试。 性能对比。图3显示了CNT纤维的性能,并与碳纤维、DS-CNTF、聚合物纤维和金属的性能进行了比较。SS-CNTF将商用碳纤维的抗拉强度和DS-CNTF类似金属导电性完美结合。然而,这些新的SS-CNTF的比强度和电导率现在都在领先纤维(强度为IM10,电导率为铝)的范围之内,并与领先纤维的比导热率(K13D2U)相当。 图3 各种材料性能的而对比。 SS-CNTF的性能改进与时间关系。图4中,研究者绘制了SS-CNTF性能改进与时间的关系图,注意到电导率和抗拉强度以每年20-25%的速度在增长,即它们每三年翻一番,而热导率似乎已经稳定在约400 W/m K。电导率的理论极限是100 MS/m,抗拉强度的极限是40 GPa,研究者猜测,3到5年内这些性能可以再翻一番。然后,SS-CNTF将比任何其他纤维材料更强,并像大多数金属一样导电和导热。 图 4 SS-CNTF性能改进与时间的关系图 CNTF有啥用?该实验中所得纤维,在其横截面上有数千万个纳米管,目前正研究用于修复受损心脏的桥梁、与大脑的电子接口、用于耳蜗植入、柔性天线以及汽车和航空航天应用。 CNTF面临的挑战。CNTF要想成为聚合物和金属材料的可行替代品,仍然面临着挑战:碳纳米管的生产速率必须提高,材料的总成本必须显著降低。截至2019年,纤维-级CNTs年产量为100吨,销售价格为2000-100000美元/kg,生产成本已明显降低。尽管总产量仍然很小,但在过去五年中,这代表了大约两个数量级的产能增长和大约两个数量级的价格下降。令人惊叹的是,目前还没有其他材料具有CNTF所提供的强度、导热性和导电性以及灵活性的多重结合。 小结 综上所述,研究者通过湿法纺丝工艺制成的长碳纳米管,已经开发出了迄今为止最强和最导电的纤维。CNTF在从生物医学设备到下一代电线和电缆等广泛应用领域的使用才刚刚开始。通过扩大和改善学术和企业合作伙伴之间的合作,可以进一步加快这一进程。最终,这些努力将为市场带来一种新型的经济实惠的高性能材料。 原文链接:https://www.sciencedirect.com/science/article/pii/S0008622320307193#!
  • 《紫外光照射对氮化铝导电性的影响》

    • 来源专题:集成电路
    • 编译者:Lightfeng
    • 发布时间:2021-04-09
    • 美国北卡罗来纳州立大学(NCSU)和美国Adroit材料公司的研究人员通过在激活退火过程中使用紫外线(UV)照射,提高了硅注入的氮化铝(AlN)中的自由电子浓度,从而提高了电导率。 氮化铝具有6.1eV的超宽带隙,这对于制造大功率和高压电子产品而言具有诱人的吸引力,同时在约200nm波长范围内兼有深紫外光电子学的潜力。宽带隙材料在实现高电导率方面具有挑战性。 改善AlN中的电导率涉及降低螺纹位错和铝空位硅(VAl-nSi)络合物的密度。这些缺陷通过俘获浅至约70meV供体态的电子,降低了硅作为掺杂剂的有效性,从而降低了电导率。 紫外光照射的目的是产生多余的少数载流子,这些载流子的存在使VAl-nSi络合物的形成能向上移动,从而降低了它们的密度。产生空穴需要能量高于6.1eV带隙(即波长小于200nm)的UV光子。该技术的理论设计为缺陷准费米能级(dQFL)控制。 研究人员使用位错密度低于103 / cm2的AlN衬底,单晶AlN由通过物理气相传输(PVT)生长的球团加工而成,再通过使用富氮金属有机化学气相沉积(MOCVD)添加同质外延AlN层。 n型掺杂是在100keV能量下用1014个原子/cm2的硅离子注入实现的,在注入过程中,将AlN衬底倾斜7°,以避免离子容易穿过晶格结构中对齐间隙的通道效应。 在氮气中以100Torr的压力在1200°C退火2小时来激活掺杂,温度被视为较低,低于系统达到热力学平衡所需的值。 用来自1kW汞氙灯的UV灯照射样品。紫外线照射减少了中间间隙的光致发光,表明成功抑制了植入后退火过程中补偿性VAl-nSi点缺陷的产生。 用于电气测量的触点是范德堡格式的电子束蒸发钒/铝/镍/金。在氮气中在850°C下沉积一分钟后,对触点进行退火。 在300K和725K温度范围内测量在各种条件下退火的样品的电导率。与在相同温度但没有紫外线的情况下退火的样品相比,经过紫外线退火的样品在整个温度范围内的导电率提高了30倍。随着温度接近室温,显示出较差的性能。 利用电导率的温度依赖性,研究人员估计紫外线照射的样品的补偿比为0.2,而在1200°C下无紫外线退火的样品的补偿率为0.9。 由于植入物产生的高斯施主浓度和迁移率随深度而变化,预计室温霍尔测量结果不会很准确,因此,进行了热探针交流测量。 在高于400°C的温度下,自由电子浓度估计为5x1018 / cm3(假定为200nm层的平均值),迁移率为1cm2 / V-s。薄层载体的浓度接近硅剂量,约为?1x1014 / cm2。 研究人员评论说:“虽然离子注入在AlN中证明了室温下超过1/Ω-cm的高导电性,但尽管补偿率很低,测量的载流子迁移率却比外延掺杂低100倍左右。” 在没有UV的情况下经过1200°C退火的样品在类似的迁移率下具有约1x1013 / cm2的薄片载体浓度。低迁移率促使科研人员进一步深入研究,希望可以得到改善,从而实现更高的导电性。