《北京大学反式结构钙钛矿太阳能电池取得突破 实验室最高效率达到21.51% 》

  • 来源专题:集成电路制造与应用
  • 编译者: shenxiang
  • 发布时间:2018-07-05
  • 北京大学物理学院“极端光学创新研究团队”的朱瑞研究员、龚旗煌院士与合作者展开研究,首次采用“胍盐辅助二次生长”技术调控钙钛矿半导体特性,在提升反式结构钙钛矿太阳能电池性能方面取得了突破性成果,创下了该类太阳能电池器件效率的最高记录。相关研究于2018年6月29日在国际顶级学术期刊《科学》(Science)上发表(Enhanced photovoltageforinverted planar heterojunction perovskite solar cells,Science,Vol.360,Issue6396,pp.1442-1446,DOI:10.1126/science.aap9282)。

    随着人类社会的不断进步,由工业生产所导致的能源和环境问题日益凸显,化石燃料(石油、煤炭、天然气等)的有限储量及其燃烧带来的全球变暖等问题促使人们不断地寻找和开发绿色可再生的新型能源。太阳能具有清洁、无污染、分布广泛且能量充分的优势,是有希望获得大规模应用的新型能源之一。太阳能电池利用光生伏特效应将太阳光能直接转化为电能,受到来自学术界和工业界的广泛关注和研究,也得到了各国政府的大力支持。

    近年来,钙钛矿太阳能电池以其制备简单、成本低和效率高的优势迅速崛起成为新型光伏技术领域的新宠,其光电转换效率在短短八年内实现了跳跃式增长,目前报道的最高效率已达到商业化单晶硅太阳能电池的效率水平,表现出极大的优势和应用潜力。 钙钛矿太阳能电池分为正式(n-i-p)和反式(p-i-n)两种器件结构。相比于正式器件,反式结构器件因制备工艺更加简单、可低温成膜、无明显回滞效应、适合与传统太阳能电池(硅基电池、铜铟镓硒等)结合制备叠层器件等优点,受到越来越多的关注。但是,反式结构器件也存在一些显著不足,例如,开路电压与理论值差距较大、光电转换效率相对偏低,这主要是由于器件中存在大量的缺陷所导致。这些缺陷主要存在于钙钛矿活性层中、钙钛矿活性层与电荷收集层界面处,造成了光生载流子的非辐射复合,进而致使能量损失严重,最终限制了开路电压的提升和光电转换效率的改善,制约了该类结构器件的发展。

    针对反式结构钙钛矿太阳能电池在光电转换效率上存在的瓶颈,朱瑞研究员、龚旗煌院士与合作者展开研究,首次提出了“胍盐辅助辅助二次生长”方法,开创性地实现了钙钛矿薄膜半导体特性的调控,显著降低了器件中非辐射复合的能量损失,在提升器件开路电压方面取得了突破,首次在反式结构器件中获得了超过1.21V的高开路电压(材料带隙宽度~1.6eV)。同时,在不损失光电流和填充因子等性能参数的情况下,显著提高了反式结构钙钛矿电池的光电转换效率——实验室最高效率达到21.51%。经中国计量科学研究院认证,器件的光电转换效率也高达20.90%,这是目前反式结构钙钛矿太阳能电池器件效率的最高记录。该结果为提升反式钙钛矿太阳能电池器件效率、推进该类新型光伏器件的应用化发展提供了新思路。这种制备技术也有望进一步拓展到钙钛矿叠层太阳能电池以及钙钛矿发光器件中,具有潜在的应用前景和商业价值。

相关报告
  • 《我国科学家在钙钛矿太阳能电池领域取得重要突破》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2018-07-18
    • 钙钛矿太阳能电池以其制备简单、成本低和效率高的优势在新型光伏技术领域迅速崛起。钙钛矿太阳能电池按照器件结构可分为正式和反式两种结构,相比于正式结构,反式结构器件因制备工艺更加简单、可低温成膜、无明显回滞效应、适合与传统太阳能电池(硅基电池、铜铟镓硒等)结合制备叠层器件等优点,受到学术界和产业界的关注。但仍然存在开路电压与理论值差距较大、光电转换效率仍然偏低等应用瓶颈。 在纳米研究国家重大科学研究计划(2015CB932200,钙钛矿型太阳电池的基础研究)的支持下,北京大学朱瑞研究员、龚旗煌院士与合作者展开研究,针对反式结构钙钛矿太阳能电池在光电转换效率上存在的瓶颈,提出了“胍盐辅助二次生长”方法,开创性地实现了钙钛矿薄膜半导体特性的调控,显著降低了器件中非辐射复合的能量损失,在提升器件开路电压方面取得了突破,首次在反式结构器件中获得了超过1.21V的高开路电压(材料带隙宽度~1.6eV)。同时,在不损失光电流和填充因子等性能参数的情况下,显著提高了反式结构钙钛矿电池的光电转换效率—实验室最高效率达到21.51%。经中国计量科学研究院认证,器件的光电转换效率高达20.90%,是目前反式结构钙钛矿太阳能电池器件效率的最高记录。该结果为提升反式钙钛矿太阳能电池器件效率、推进该类新型光伏器件的应用化发展提供了新思路,可进一步拓展到钙钛矿叠层太阳能电池以及钙钛矿发光器件中,具有潜在的应用前景和商业价值。相关成果6月29日在线发表在《科学》杂志上。
  • 《“印刷术”突破柔性钙钛矿太阳能电池难题》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:姜山
    • 发布时间:2018-01-05
    • 2017年12月29日,在中国科学院化学所绿色印刷重点实验室里,研究人员向《中国科学报》记者展示了他们最新制备的钙钛矿柔性太阳能电池,厚度和柔韧程度与一张杂志纸差不多。三年来,他们利用“印刷术”突破了柔性钙钛矿太阳能电池难题,有望为柔性可穿戴电子设备提供可靠电源。日前,这一成果在国际学术期刊《先进材料》(Adv. Mater.)上刊发。 这项研究通过纳米组装-印刷方式制备了钙钛矿的蜂巢状纳米支架,并在其内部搭建起“光学谐振腔”,这两项创新同时提高了柔性钙钛矿太阳能电池力学稳定性和光电转化率。 钙钛矿材料的新应用 “如果智能手表能配太阳能发电的表带,就不用天天充电了。”谈到开展该研究的初衷,论文第一作者、中国科学院化学所博士生胡笑添表示。钙钛矿发电效率的指数级增长和喷墨打印钙钛矿单晶材料的技术积累让他看到这一想法实现的可能。 钙钛矿光电转化效率高、价格低,是一种良好的太阳能电池材料。当不少实验室都在如何让钙钛矿代替硅电池上下功夫时,宋延林课题组看到了另一个应用方向——柔性太阳能发电材料。 科研人员对钙钛矿“又爱又恨”,其本身薄,基材厚度在一毫米以内,极具在人体上穿戴的可能;但材质脆,不耐弯折。为增加弯折性,胡笑添曾尝试用软性材料将钙钛矿上下包裹起来等多种方式,效果都不尽如人意。最终,他受到自然界最稳定力学结构蜂巢的启发,通过纳米组装-印刷方式制备出“蜂巢状纳米支架”可作为力学缓冲层,实现了柔性钙钛矿太阳能电池更高的力学稳定性。 同时,钙钛矿电池的光电转化率也是亟待解决的问题之一。由于技术限制,钙钛矿薄膜的面积越大,光电转换率越低。胡笑添则在器件内部搭起光学谐振腔,实现了50平方厘米面积上12.32%的光电转化率,在高效率电池在大面积可重复性上取得重大突破。 印刷制备提供技术积累 事实上,宋延林课题组能克服钙钛矿的性质作出突破离不开他们在绿色印刷上的技术积累。区别于传统图文材料的印刷内容,宋延林课题组提出了“大印刷”概念,可以把各种有功能的材料通过印刷的方式印到基材上。如今,科研人员的“印刷技能”已精确到纳米级别,能打印出“最细的线”和“最小的点”。去年,实验室还成功做出了可穿戴传感器,可识别复杂表情,并有望应用于脉搏监测、心脏监护和远程操控等领域。 “钙钛矿电池制备便是通过喷墨打印的方式将钙钛矿单晶材料打印到基材上。”宋延林说。 不仅如此,用于提高弯折性的蜂巢状纳米支架也通过印刷制备:“我们用墨水印刷的方式把蜂巢大小的球组装成单层紧密排列的形式,之后将蜂巢材料填充球与球的间隙中间,再将球冲刷掉,就形成了蜂巢状的网。” 大面积柔性材料未来可期 三年,2000多个器件,是宋延林带领课题组在这项研究中的尝试。“季节性的湿度变化对实验成功率影响都很大,跟撞运气一样,每个步骤都很细心很认真,但最后器件做出来性能就是不好。”宋延林回忆。在项目研究的三年中,胡笑添和课题组成员每天都要做至少三个样品出来测试数值。 胡笑添用镊子夹起一块指甲盖大小的玻璃板,一块深棕色的钙钛矿太阳能电池镶嵌其中。 “这是目前大部分实验室的研究方向,在极小的面积上实现较大的光电转换率,这块材料转换率达到20%左右,但面积太小,发电量也只有几毫瓦,应用价值还不够。”宋延林表示,科学研究要面向应用,钙钛矿太阳能电池不能一味追求高转化率而忽视可用性。目前,实验室的研究重点还放在大面积和柔性上,更大面积、更易弯折的钙钛矿电池研究成果有望明年发布。 尽管距离钙钛矿太阳能电池走出实验室还有许多难题,研究人员依然看好其未来应用。除了可穿戴设备,未来,钙钛矿电池还可能应用在衣服、汽车玻璃贴膜等地方,吸收太阳光,转化的电量给其他设备充电,既环保又实用。