《使用一个简单的拉伸创建石墨烯强大的伪磁性的领域》

  • 来源专题:纳米科技
  • 编译者: chenfang
  • 发布时间:2015-12-15
  • 该报告显示了石墨烯的最新发展情况,在UMD机械工程师们可能已经找到一种方法。与石墨烯相关的研究目前正在推动潜在的革命性的新应用,范围包括操作更快的电子产品,可穿戴技术和智能服装,更好的能量存储,传感器和医疗设备。已经开发了一个理论模型,演示了如何塑造和拉伸的石墨烯创造一个强大的、可调的、可持续的磁力。马里兰州研究人员可能已经解释了如何塑造一个石墨烯带,简单地将其两端产生一个均匀的伪磁场。现有的纳米加工技术团队有信心,他们将很快就能够转变他们的理论模型设计的现实,试图通过一个简单的拉伸实现在一个平面的石墨烯极高的伪磁场简单而有效的解决方案。

相关报告
  • 《新闻稿:马里兰大学的研究人员用简单的拉伸创建了强大的石墨烯pseudomagnetic场》

    • 来源专题:纳米科技
    • 编译者:chenfang
    • 发布时间:2015-12-18
    • 马里兰大学的研究人员在石墨烯的研究中取得了突破性的发现,即可以提供一个测试平台来了解在非常高磁场中电子是如何迁移的。 他们已经开发了一个理论模型,演示了如何塑造和拉伸石墨烯来创造一个强大的、可调的、可持续的磁力。他们可能也已经解释了如何塑造一个石墨烯带,以至于可以简单地在其两端产生一个均匀的pseudomagnetic场。通过现有的纳米加工技术,团队有信心可以很快将他们设计的理论模型转变为现实。通过三个计算模型验证了该团队的模型,它可以预测从0到200Tesla. 可调的磁场强度。这种典型的控制pseudomagnetic场的方式,为可控高磁场中电子运动的新方法创造了无限潜能。 目前该团队的研究已经在物理评论快报上发表了。
  • 《二维铁磁性氧化石墨烯,开创了一个全新的科研领域》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:姜山
    • 发布时间:2017-05-08
    • Lawrence Berkeley国家实验室的研究人员已经成功证明了二维(2D)层状晶体可以通过范德华力聚集在一起,这些二维结构晶体包括石墨烯和硫化钼,他们可以展现材料本身的铁磁性。研究小组不仅证实了这些材料的存在,而且他们还可以高度控制材料的铁磁性。这项发现对于实际应用有着深刻的影响,包括磁传感器和正在发展的电子信息编码技术。 这项研究发表在《自然》杂志上,Berkeley科学家曾把二维硫化物层状材料称为铬碲锗(CGT),它是一层铁磁绝缘体,由于它在自旋电子设备中的潜在应用,已经获得人们广泛的关注。尽管这种材料几十年以来一直以块状的形式存在,但是最近它被制成了二维层片的形式,并成为范德瓦尔斯晶体系列的一部分。 研究人员使用了一种被称为磁光克尔效应的光学技术,扫描克尔光学显微镜观察材料时就涉及到这项技术。当偏振光与材料中的自旋电子相互作用时,这种技术可以检测偏振光线是如何改变的。这使得它能够清楚的检测到只有一层原子厚度的材料的磁性。 Xiang Zhang,Berkeley实验室材料科学部高级研究员,加州大学Berkeley教授,在一封介绍IEEE光谱电子的邮件中说,“我们关于二维范德瓦尔斯晶体的内在铁磁性这一发现开辟了一个全新的科学研究领域。” 根据Zhang的研究,虽然理论上认为二维范德瓦尔斯晶体中的铁磁性可能存在,但检测它们是非常困难的,甚至于不可能创造它们存在的环境。这是因为在非零温度下,热量会不可避免地进入铁磁性材料,并激发出自旋电子。相比于3D材料,这种热激发在2D材料上显现的更加强烈。结果是,当一个给定的材料从3D到2D收缩时,铁磁性出现的临界温度大幅下降。由于这种强烈的热效应,二维铁磁性本质上是脆弱的。 虽然热效应在抑制磁有序方面起着至关重要的作用,由Berkeley实验室研究人员研究的二维范德瓦尔斯晶体具有固定的磁各向异性,即磁化取向有一个优先的方向。优先的和非优先的方向之间存在稳定的能量差,这种能量差使得二维磁序阻碍了热激发,这有可能就是Berkeley的科学家观察到的二维铁磁性。 Cheng Gong是张实验室的博士后研究员,在一份新闻稿中说:“与二维范德瓦尔斯材料不同,比如金属如铁、钴、镍的薄膜,它们结构不完善,容易受到各种干扰,导致虚假的各向异性和不可预测性”。“相反,高度结晶,均匀平面的2D CGT,由于内在较小的各向异性,使得较小的外部磁场能有效地控制各向异性,这种史无前例的发现将有助于实现磁场区域对铁磁转变温度的控制。” 由于设备尺寸减小要求越来越高的信息存储密度,这一发现可能满足这一需求。Zhang说,“迟早,人们必须解决3D材料缩小到2D体系时引发的铁磁性问题,换句话说,在许多领域,由于设备密度的不断增加,3D材料必须降到2D。” 一般情况下,电子设备和光学设备会逐步转向2D材料,因为这种材料更适合微型设备。此外,二维材料的性质可以很容易地控制和调整,因此特别适合于传感器和调制器。由于二维材料通常是透明的,光吸收有限,因此,在光学应用方面有很大意义。 张说“我们设想,二维铁磁性范德瓦尔斯材料将会具有广泛的潜在应用,如纳米级存储器、磁传感器、透明的磁铁,磁光调制器。” 进一步研究中,Zhang和他的同事们打算将重点放在两个方向:基础物理和实际应用。经研究人员论证的二维范德华晶体,为解决繁杂的电子自旋物理现象提供了一个理想的实验平台,这个平台被严格的限制在一个完美的二维材料系统中。 Zhang补充说:“我们希望设计和控制这种二维材料的磁性能,以使它们适用于各种应用场合。” 文章来源:新材料网