《圣路易斯华盛顿大学、美国国家标准与技术研究院(NIST)和剑桥大学的科学家们创造了一种新型量子传感器》

  • 来源专题:计量基标准与精密测量
  • 编译者: 李晓萌
  • 发布时间:2024-07-20
  • 近日,圣路易斯华盛顿大学、美国国家标准与技术研究院(NIST)和剑桥大学的科学家们创造了一种新型量子传感器,该传感器利用量子纠缠制造时间旅行探测器。相关研究成果发表在《Physical Review Letters》期刊中,

    多年来,时间旅行的想法一直让科幻爱好者眼花缭乱。科学告诉我们,去未来旅行在技术上是可行的,至少如果你愿意接近光速,但回到过去是不可能的。但是,如果科学家能够利用量子物理学的优势来揭示过去发生的复杂系统的数据呢?新的研究表明,这一前提可能并不牵强。在2024年6月27日发表在《物理评论快报》上的一篇新论文中,圣路易斯华盛顿大学Charles M.Hohenberg物理学教授兼量子跃迁中心主任Kater Murch及其同事NIST的Nicole Yunger Halpern和剑桥大学的David Arvidsson Shukur展示了一种新型量子传感器,该传感器利用量子纠缠制造时间旅行探测器。

    Murch将这一概念描述为类似于能够将望远镜送回过去,捕捉到你从眼角看到的流星。在日常生活中,这种想法是行不通的。但在量子物理学这片神秘而神秘的土地上,可能有一种方法可以绕过这些规则。这要归功于纠缠量子传感器的一种特性,Murch将其称为“后见之明”。

    这个过程始于量子单线态中两个量子粒子的纠缠——换句话说,两个自旋相反的量子比特——因此,无论你考虑哪个方向,自旋都指向相反的方向。从那里开始,其中一个量子位——Murch称之为“探针”——受到磁场的作用,使其旋转。

    下一步就是众所周知的魔法发生的地方。当测量辅助量子位(实验中未用作探针的量子位)时,纠缠的性质有效地将其量子态(即自旋)“及时”发送到对中的另一个量子位。这让我们回到了这个过程的第二步,磁场使“探针量子比特”旋转,这就是后见之明的真正优势所在。

    在这种实验的通常情况下,使用自旋的旋转来测量磁场的大小,测量失败的可能性是三分之一。这是因为当磁场沿着x、y或z轴与量子比特相互作用时,如果它平行于或反平行于自旋方向,结果将是无效的——没有旋转可测量。在正常情况下,当磁场未知时,科学家们必须猜测沿哪个方向准备自旋,导致三分之一的失败可能性。后见之明的美妙之处在于,它允许实验者通过时间旅行为自旋设定最佳方向。

    爱因斯坦曾将量子纠缠称为“远距离的怪异行为”。也许纠缠最诡异的部分是,我们可以将纠缠的粒子对视为同一粒子,在时间上向前和向后。这为量子科学家提供了创造性的新方法来构建更好的传感器,特别是那些可以有效地向后发送的传感器。这类传感器有许多潜在的应用,从探测天文现象到研究磁场中获得的上述优势,随着这一概念的进一步发展,更多的应用肯定会成为人们关注的焦点。

  • 原文来源:https://physics.wustl.edu/news/quantum-advantage-building-time-traveling-quantum-sensors
相关报告
  • 《美国国家标准与技术研究院(NIST)的科学家们在重重压力下采用光学帕斯卡方法进行了更加精确的测量》

    • 来源专题:计量基标准与精密测量
    • 编译者:张宇
    • 发布时间:2025-07-02
    • 近日,美国国家标准与技术研究院(NIST)的研究人员及其同事克服了使用一种新方法测量气体压力的关键障碍——使用光束穿过气体。 最终,这项新工作可能使工业界能够建立自己的光学压力标尺,直接追溯到自然界的基本常数,无需将压力测量设备送到NIST进行校准,从而节省了成本和时间。 精密的压力测量对于数十种工业应用至关重要,包括石油精炼,以及飞机高度计、内燃机和涡轮机、泄漏检测、微芯片制造和航空航天领域。 科学家通常使用压力天平或液体压力计来测量气体压力,这些方法是基于经典力学原理的,而气体压力传统上被定义为单位面积上的力。相比之下,光学方法基于热力学和量子理论。光学技术仅依赖于气体的温度以及它减缓或折射不同频率光的程度。由于这些特性通过国际单位制(SI)与自然界的基本常数相关联,因此该技术有可能减少压力测量的不确定性,并缩短校准工作所需的步骤。 压力的具体数值是以一种称为帕斯卡的单位来度量的。在一项新研究中,NIST研究人员Patrick Egan和Jack Stone以及中国计量科学研究院的杨远超实现的一种新的帕斯卡测量方法——光学帕斯卡——该方法可追溯到国际单位制(SI)的温度单位。 要了解光学测量方法,可以想象一个装满气体的盒子。对于一个固定体积和温度已知的盒子来说,盒内的压强仅由盒子中的原子数决定。(原子数量越多,原子之间以及原子与盒子内壁之间的碰撞次数就越多,压强也就越高。) 这听起来很简单,但实际上,一个午餐盒大小的容器里可以容纳超过10亿万亿个原子,数量多到根本数不清。因此,研究人员依靠一个测量值—与原子数量成正比的光学量。这个量值被称为折射率,用于衡量光在穿过气体时相对于其在真空中的速度减慢了多少。 这种减慢现象发生在光束的电场使围绕每个原子核的电子云极化(即拉伸)时。较重的原子(如氩)具有较多的电子,与氩原子相比,而较轻的原子(如氦)的电子较少,它们更容易极化且在其中的光速降低的更多。 然而,极化率并不总是容易计算的。事实上,研究人员只在一种原子气体——氦气中实现了极化率的准确计算,这是因为其电子结构相对简单。然而,这些研究成果并没有太大的帮助,因为在低压下,氦气几乎不会改变光速,也就很难确定固定体积中氦原子的数量,因此也难以确定其内部压强。 为了提供一条实现光学帕斯卡的实用途径,Egan和他的同事得出结论,他们将不得不准确测量一组较重原子的极化率。于6月17日在线发表在《Physical Review Applied》上的一篇文章中,阐述了NIST团队及其合作者已经在氩气中完成了极化率的准确计算。 在他们的研究中,研究人员克服了过去十年来一直阻碍光学研究方法的挑战:他们发现用于测量折射的仪器会由于所探测气体的压力而发生收缩或膨胀。如果不考虑这个因素,仪器的形变必然会降低测量的准确性。 然而,这种形变与光的波长无关。利用这一特性,研究人员在两个不同的波长处测量了光的减慢程度,从而抵消了形变的影响因素。这使得该团队最终能够准确测量出氩气的极化率。 Egan说,由于地球上的氩气储量丰富且运输存储都很方便,这将使得美国各地的工业界和学术界都能够采用新的光学帕斯卡方法来进行精确测量。(DOI:10.1103/z9zz-lqzh)
  • 《科学家们为新型电子设备创造了一种“晶中之晶”》

    • 来源专题:可再生能源
    • 编译者:pengh
    • 发布时间:2019-12-25
    • 液晶使新技术成为可能,如LCD屏幕,通过它们能够反射特定的颜色波长。 芝加哥大学普利兹克分子工程学院和阿贡国家实验室的研究人员开发了一种创新的方法来雕刻“水晶中的水晶”。这些新晶体可用于新一代显示技术或能耗极低的传感器。 因为这种晶体内的晶体可以反射某些波长的光,而其他晶体则不能,所以它们可以用于更好的显示技术。它们还可以通过温度、电压或添加的化学物质进行操作,这将使它们具有传感应用的价值。例如,温度的变化会导致颜色的变化。由于这种变化只需要轻微的温度变化或很小的电压,所以这些设备消耗的能量非常少。 积分技术 液晶的分子取向使得它们在许多显示技术的关键方面都很有用。它们还可以形成“蓝相晶体”,其中分子以高度规则的模式排列,反射可见光。 蓝相晶体具有液体和晶体的特性,这意味着它们能够流动和柔韧,同时表现出高度规则的特性,可以传输或反射可见光。与传统的液晶相比,它们还具有更好的光学性能和更快的响应时间,使它们成为光学技术的良好候选。 此外,与石英等传统晶体相比,蓝色相位晶体中负责反射光的特征被分隔得比较远。更大的特征尺寸使得设计它们之间的界面变得更容易,这在传统的晶体材料中是出了名的困难。这些界面很重要,因为它们为化学反应和机械转换提供了理想的场所,而且它们可以阻碍声音、能量或光的传输。 在晶体之间创建一个接口 为了设计一个蓝相晶体界面,科学家们开发了一种技术,这种技术依赖于液晶沉积表面的化学模式,从而提供了一种手段来操纵它们的分子方向。该方向然后被液晶本身放大,允许一个特定的蓝色相位晶体被雕刻在另一个蓝色相位晶体内。 这个过程是理论预测和实验的结果,最终得到了正确的设计,使他们能够在液晶中创造出特定的定制晶体形状——这是一个新的突破。 不仅如此,新雕刻的水晶可以被温度和电流控制,从一种蓝色相转变为另一种蓝色相,从而改变颜色。 “这意味着这种材料可以非常精确地改变它的光学特性,”论文的合著者胡安·德·帕布罗说。“我们现在有了一种可以对外部刺激做出反应并反射特定波长光线的材料,这是我们以前没有好的选择。” 用于显示技术,传感器 这种能力来操纵晶体在这样一个小规模还允许研究人员使用他们作为制造完美统一的模板结构在纳米尺度上,保罗•尼利(Paul Nealey)合著者说布雷迪w .杜德恒分子工程学教授和一个世界领先的专家模式的有机材料。 “我们已经在试验种植其他材料和光学设备,”Nealey说。“我们期待着用这种方法创造出更复杂的系统。”