《外泌体︰ 肺癌中的新发现》

  • 来源专题:重大新药创制—研发动态
  • 编译者: 杜慧
  • 发布时间:2017-05-31
  • 循环外泌体是细胞-细胞通讯的主要中介物。目前,已在恶性肿瘤患者及健康者的各种体液中发现外泌体的身影。多项研究都指出在不同类型的肿瘤中,包括肺癌,外泌体miRNAs可作为生物标志物和治疗药物。本篇文章对外泌体和外泌体miRNAs在肺癌中作为诊断指示剂及其治疗响应进行了综述。此外,也报道了外泌体作为潜在治疗药物的初步数据。

相关报告
  • 《保护植物免受干旱的新发现》

    • 来源专题:农业立体污染防治
    • 编译者:金慧敏
    • 发布时间:2017-02-27
    • 气候变化会带来严重的干旱,威胁着植物生长。伊利诺伊大学研究人员发现一种保护植物免受干旱的措施:对植物喷洒一种化合物,诱发作物更加耐旱。他们认为通过确定关键的分子机理,可以使植物减少水分损失。 面对干旱,植物可以诱发自然防御。它们产生一种激素,即脱落酸(ABA),ABA与一种蛋白结合,产生PYL受体,触发一个反应链,关闭叶片的毛孔。这样植物保留了水资源,可以在干旱环境中持续生长。 研究人员认为问题的关键是ABA激素。由于ABA的中度稳定和分子结构的复杂性,ABA不能直接喷洒在田野中。当然可以通过理解激素的作用原理,可以设计一些分子,让它们起到与ABA一样的功用。这个分子还应该是廉价、稳定和环境友好的,农民才可以用它让作物更抗旱。 利用分子动态模拟,研究人员首次揭示了ABA结合PYL受体的分子细节。通过逐帧的模拟显示了如何、在哪里激素结合蛋白,以及引起形变,关闭叶片毛孔。研究人员想确定水稻的这种机制,将开展更加严格的计算和基因学研究以确定这个结合过程。
  • 《新发现铌钨氧化物可用于电池快充技术》

    • 来源专题:集成电路
    • 编译者:shenxiang
    • 发布时间:2018-07-27
    • 《自然》(Nature)杂志7月25日报道,英国剑桥大学的研究人员发现,铌钨氧化物(NTO)可用于制造快充电池。虽然NTO晶体结构很复杂,但锂离子通过NTO的速度远远超过通过传统电极材料的速度。此外,NTO独特的物理结构和化学性质,对研究人员研究快充电池的安全性也有借鉴意义。 目前,虽然智能手机的电池通过快充技术已经能够在数分钟内充满电,但电池技术的发展仍然阻碍了两类清洁技术(电动汽车和太阳能电网级存储)的广泛应用。剑桥大学化学系博士后研究员、论文第一作者肯特格里菲斯(Kent Griffith)说:“我们一直在苦苦寻找理想的快充电池材料。” 电池的充电速度取决于锂离子的正极通过电解质移动到负极的速率。在寻找新型电极材料时,研究人员通常会试着让材料的粒径更小。格里菲斯解释说:“这样设计的思路是:减少锂离子的移动距离可使运移时间缩短,从而加快充电进程。然而,利用纳米技术制造的电池,电解质副反应很多,成本很高,电池寿命也较短。”剑桥大学化学系教授、论文资深作者克莱尔格雷(Clare Grey)补充说:“因此,我们将视线转向了某些固有特性符合需求的微米级材料。”最终,他们发现NTO可能是潜在的解决方案。 NTO具有刚性的开放结构,稳定性好且不会“困住”锂离子。其较大的颗粒尺寸也避免了纳米级颗粒的缺陷。格里菲斯推测,NTO之前受到冷遇的原因在于其复杂的原子排列情况。然而,正是这种结构复杂性和混合金属的组成为NTO提供了独特的锂离子传输性能——研究人员利用脉冲场梯度(PFG)核磁共振波谱(NMR)技术,测量了锂离子在NTO中的移动速度,发现比常用电极材料高出若干数量级。NTO除具有高锂传输速率,其制造也较简单。格里菲斯说:“NTO无需额外的化学物质或溶剂就能制造,可扩展性良好。”此外,NTO作为电极材料,虽然电池电压较低,但这对安全性的好处毋庸置疑。 格雷认为,虽然NTO可能只适用于某些特定应用,但继续发掘类似NTO的新化合物,对电池领域的持续发展很重要。