《研究发现充电可使材料获得抗菌性能》

  • 来源专题:生物安全知识资源中心 | 领域情报网
  • 编译者: hujm
  • 发布时间:2018-05-29
  • 材料和电之间存在密切的关联。如基于摩擦起电的现象,通过选择合适的材料和电路设计,可成功制备将机械能转化为电能的摩擦纳米发电机。而将电场作用于材料时,也可对材料的多方面性质产生影响,如改变材料的电荷数量和电荷分布。与此相比,不那么为人所知的是,生物细胞也在时刻进行着密集、精细、活跃的电活动。细胞维持新陈代谢所必需的能量的产生,就是通过电子在呼吸链上的一系列蛋白之间的传递所实现的。真核生物细胞的呼吸链相关蛋白位于线粒体内,而微生物如细菌的呼吸链相关蛋白位于细胞膜上。因此,微生物对于外界的电扰动更为敏感。

    很多植入材料可通过其表面的物理修饰或化学改性,获得一定的抗菌性能,从而更适应植入的需求。这些修饰的作用机理都可落到“电”上。如在钛基材料的表面通过离子注入的方式引入银、锌等纳米颗粒,可由于在银、锌纳米颗粒的周围与钛基底发生微观的电化学反应而使得钛基底获得抗菌性能。又如通过化学修饰,在材料表面修饰上带正电荷的高分子,使得材料表面的电荷发生改变,也可使原本不具备抗菌能力的材料获得抗菌性能。再者可以引入电场直接作用在纳米材料表面,由于纳米材料的小尺寸,可以在表面形成高压电场,对细菌造成电穿孔,也可造成杀菌的效果。

    近日,中国科学院北京纳米能源与系统研究所在实验中发现并确认了一种新的电对材料的作用方式,可以使材料获得抗菌性能。该研究结果于5月24日发表在《自然-通讯》(Nature Communications)期刊上(DOI: 10.1038/s41467-018-04317-2)。

    这一研究发现起源于纳米能源所李舟课题组和王中林课题组于2017年联合在Nano Energy上发表的一项研究工作,助理研究员封红青为第一作者。在那项工作中,他们将收集水波能的摩擦纳米发电机输出的电压、电流连接到修饰了氧化锌纳米线和纳米银颗粒的碳布电极上,并让细菌溶液从碳布电场之间流过。他们检测了发电机工作提供电压、电流时,流经该系统的细菌被杀灭的情况。在发电机停止工作不再对系统供电之后,他们又持续检测了一段时间内细菌被杀灭的情况。他们发现了一个奇特的现象:发电机停止供电长达20分钟的时间段内,修饰了氧化锌和纳米银的碳布电极依然对流经它们的细菌具有很强的杀灭作用!而如果没有发电机之前的供电过程,同样的修饰了氧化锌和纳米银的碳布电极则没有这样强的杀菌作用。由于该实验体系的细菌溶液只是一次性地流经电极,通电过程中可能发生的电化学产物都已随之前的溶液流走,因此断电后的抗菌性能不是由电化学产物的残留造成的,而是一种电场对材料的“残余影响”造成的。研究者发现电极材料的电容越大(氧化锌纳米银双修饰>氧化锌单修饰>原始碳布),则这种断电后的长期抗菌性能越强。同时,在断电后处理的细菌胞体内,检测到了强烈的活性氧信号。

    在此基础上,由封红青指导博士生王国敏开展实验工作,纳米能源所李舟课题组和香港城市大学朱剑豪课题组密切合作,对这一现象进行了系统的研究。在这一研究中,他们采用了新的抗菌体系和新的电容性电极材料:从原来的动态流动体系改为静态处理体系,采用基于二氧化钛纳米管的电容性材料,用碳修饰来增加材料的电容。并使用了传统的直流、交流电源来对电极材料充电并检测断电后电极片的抗菌性能。与Nano Energy 的发现非常一致,他们在新的体系中也检测到了断电后电场确实赋予了原本不抗菌的电容材料以新的抗菌性能,而且抗菌性能力与材料电容呈正相关。除了用之前的纳米发电机供电之外,使用常见的直流、交流电源供电都可以产生这样的效应;在被处理的细菌胞体内,同样检测到了活性氧信号。基于此,他们确认充电可以赋予原本不抗菌的电容性材料以抗菌性能是一种普适的现象,他们将这一现象命名为“充电后的抗菌性”(post-charging anti-bacterial property)。他们还发现,充电这一操作对碳掺杂二氧化钛表面的生物相容性没有产生任何不利的影响,甚至促进了成骨细胞在基底上的粘附和生长。

    “充电后的抗菌性”的发现和确认,提供了一种赋予医学植入材料以抗菌性能的新方法。例如:在传统的物理、化学等表面修饰方法之外,人们通过单纯的充电,就可以使得骨科植入材料的二氧化钛表面获得抗菌性,从而减少术后感染和并发症的风险。这种“充电后的抗菌性”的新方法还可以避免传统物理、化学等修饰手段的负作用,促进成骨细胞在植入物表面的粘附和生长,非常有利于骨折后的修复治疗。同时,对“充电后抗菌”这一现象的揭示,也让人们对电、材料以及生物之间的相互作用有了新的认识,有望据此设计更多的电对材料的修饰方案以及开发更多的用途。该现象深层次的机理还值得进一步探索。此工作封红青、王国敏为并列第一作者,李舟和朱剑豪、中国科学院深圳先进技术研究院研究员王怀雨为论文的并列通讯作者。

  • 原文来源:http://news.bioon.com/article/6722648.html
相关报告
  • 《宁波材料所在量子材料研究方面获得重要进展》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2021-01-12
    • 磁斯格明子是一种非共线磁涡旋结构并受拓扑保护的准粒子。磁斯格明子因其可以做到纳米尺寸、非易失且易驱动从而被认为在下一代自选电子学器件如信息存储、逻辑运算或者神经网络技术等领域将会扮演重要角色。磁斯格明子的形成通常是由使磁矩倾向于垂直排列的反对称交换耦合(Dzyaloshinskii-Moriya interaction,DMI)引起的。DMI同时也是凝聚态物理等基础科学研究中的一个重要物理相互作用,所以DMI的研究和磁斯格明子的研究已然成为当前自旋电子学领域,同时也是量子材料研究热点。    DMI的出现要求打破磁性材料的空间反演对称性以及强的自旋轨道耦合作用(spin-orbital coupling,SOC)。因此目前实验上大多利用磁性薄膜和具有强SOC的重金属薄膜形成异质结来诱导出大的DMI,从而实现磁斯格明子态。但这些材料在实际应用过程中仍有诸如如何保证磁斯格明子的室温稳定性、可控读写和高密度等许多问题亟需解决。另一方面,近年来随着二维铁磁性薄膜的发现,二维材料在自旋电子中的应用越来越受到人们的重视,人们期待能在这些新材料中实现室温稳定可控的磁斯格明子。但是目前已制备出的二维铁磁材料如CrI 3 ,VSe 2 和Fe 3 GeTe 2 等单层薄膜,由于它们晶体结构对称性约束,导致它们都不能产生DMI,这就限制了它们在磁斯格明子领域的应用。为此人们需要探究如何才能在二维磁性材料中诱导出大的DMI,并且实现对磁斯格明子态的调控。    近年来,中国科学院宁波材料技术与工程研究所量子功能材料团队杨洪新研究员一直致力于磁斯格明子材料的研究( Nature Materials 17, 605 (2018); Nature Nanotechnology 11, 449 (2016); Phys. Rev. Lett. 124, 217202 (2020); Phys. Rev. Lett. 115, 267210 (2015); Phys. Rev. B 101, 184401 (2020); Physical Review B 102, 094425 (2020) 等)。近期,该团队提出利用二维多铁材料内禀的Rashba效应,不仅可以诱导出大的DMI,还能实现人们一直寻求的电场调控磁斯格明子。该工作开辟了二维材料中通过多铁性实现磁斯格明子的一体化电学调控新领域,以题为“Electrically switchable Rashba-type Dzyaloshinskii-Moriya interaction and skyrmion in two-dimensional magnetoelectric multiferroics”的论文以Rapid Communication形式发表在 Phys. Rev. B 102, 220409(R) (2020) 。    该团队注意到在具有垂直电极化的二维多铁材料中,其自发电偶极矩导致的电势差会在薄膜中产生强的Rashba效应,由此可以使传导电子在磁性原子间传递DMI,而不要额外的重金属元素来提高材料的SOC。并且利用二维多铁材料的磁电耦合,通过外加电场使电极化矢量翻转的同时也可实现DMI手性的翻转,如图1(a)所示。利用二维多铁材料的这一特性,可以在单一的二维多铁材料中实现可以相互转换的具有不同手性和极性的磁斯格明子态,如图1(b)所示。这可为利用磁斯格明子实现多态存储提供新的思路。为了实现以上的构想,该团队研究了CrN单层薄膜等多种二维多铁材料。他们首先通过第一性原理计算发现CrN单层薄膜中的确出现了DMI并且其大小达到了3.74meV /f.u.。通过分析DMI的能量来源,他们分析发现由简单的Rashba模型出发计算的DMI系数和直接从第一性原理计算得到的DMI是一致的。这两方面的分析表明CrN单层薄膜中的DMI是由体系Rashba效应导致的。利用计算的DMI等磁性参量,他们通过微磁模拟确认了在CrN单层薄膜可以实现磁斯格明子态。最后他们研究了电场对CrN单层薄膜的结构和磁性性质调控,并发现通过外加电场的确可以实现CrN单层薄膜的DMI大小和手性翻转。综合以上研究,研究者们提出了在CrN单层薄膜中可以实现电场对磁斯格明子的翻转调控。   该工作由梁敬华助理研究员,崔琪睿博士和杨洪新研究员合作完成。该工作得到了中国科学院基础前沿科学研究计划“从0到1”原始创新项目(ZDBS-LY-7021)、国家自然科学基金(11874059)、浙江省相关人才计划(LR19A040002)等项目支持。
  • 《机器学习方法加速绿色能源材料的发现》

    • 来源专题:工业强基
    • 编译者:张欣
    • 发布时间:2024-07-05
    • 日本九州大学的研究人员与大阪大学和精细陶瓷中心合作,开发了一个框架,利用机器学习加快绿色能源技术材料的发现。使用这种新方法,研究人员确定并成功合成了两种用于固体氧化物燃料电池的新候选材料,这两种材料可以使用氢等不排放二氧化碳的燃料发电。他们的发现已发表在《先进能源材料》杂志上,也可用于加快能源部门以外的其他创新材料的搜索。 为了应对气候变暖,研究人员一直在开发不使用化石燃料发电的新方法。 九州大学材料科学与技术系跨学科能源研究平台(Q-PIT)的Yoshihiro Yamazaki教授解释道:“实现碳中和的一条途径是创建氢社会。然而,除了优化氢的制造、储存和运输方式,我们还需要提高氢燃料电池的发电效率。” 为了产生电流,固体氧化物燃料电池需要能够有效地将氢离子(或质子)传导通过称为电解质的固体材料。目前,对新型电解质材料的研究集中在具有非常特殊的原子晶体排列的氧化物上,称为钙钛矿结构。 Yamazaki教授说:“发现的第一种质子传导氧化物是钙钛矿结构,新的高性能钙钛矿不断被报道。但我们希望将固体电解质的发现扩展到非钙钛矿氧化物,这种氧化物也具有非常有效地传导质子的能力。”然而,通过传统的“试错”方法发现具有替代晶体结构的质子传导材料有许多局限性。 为了使电解质获得传导质子的能力,必须在基材中添加少量的另一种物质,即掺杂剂。但是,由于有许多有前景的候选碱和掺杂剂——每种都具有不同的原子和电子性质——找到提高质子电导率的最佳组合变得困难且耗时。 相反,研究人员计算了不同氧化物和掺杂剂的性质。然后,他们使用机器学习来分析数据,确定影响材料质子传导性的因素,并预测潜在的组合。 在这些因素的指导下,研究人员合成了两种有前景的材料,每种材料都具有独特的晶体结构,并评估了它们传导质子的能力。值得注意的是,这两种材料仅在一次实验中就证明了质子传导性。 研究人员强调,其中一种材料是已知的第一种具有硅铝石晶体结构的质子导体。另一种具有eulytite结构,具有与钙钛矿中的传导路径不同的高速质子传导路径。 目前,这些氧化物作为电解质的性能很低,但随着进一步的探索,研究团队相信它们的导电性可以提高。