《美国费米国家加速器实验室(FNAL)超导量子材料和系统中心(SQMS)研究人员在传输量子比特研究方面取得进展》

  • 编译者: 李晓萌
  • 发布时间:2024-06-12
  • 近日,美国能源部费米国家加速器实验室超导量子材料与系统中心的科学家和工程师,?已经以0.6毫秒的记录值实现了超导transmon量子位寿命的可重复改进。这一结果是通过一种创新的材料技术实现的,该技术消除了器件中的一个主要损耗源。

    这些结果已发表在《Nature Partner Journal Quantum Information》期刊上。

    量子器件如量子位对于存储和操纵量子信息至关重要。量子位的寿命,即相干时间,决定了在错误发生之前数据可以存储和处理多长时间。这种现象被称为量子退相干,是操作量子处理器和传感器的关键障碍。

    这种被称为“表面封装”的新工艺在制造过程中保护量子位的关键层,并防止在这些器件的表面和界面形成有问题的“有损”氧化物。通过仔细研究和比较各种材料和沉积技术,SQMS研究人员研究了不同的氧化物,这些氧化物可以延长量子位的寿命,减少损耗。

    费米实验室的高级科学家、SQMS中心量子技术推进负责人Alexander Romanenko说:“SQMS正在突破量子位性能的极限。”。“这些努力表明,对工艺和材料进行系统审查,并首先解决最重要的问题,是推动量子位相干性的关键。追求器件制造和表征,与材料科学携手合作,是深化我们对损耗机制的科学理解,并在未来改进量子器件的正确方法。”

    量子位最大的障碍:相干时间

    量子位有很多种类型。量子计算机的这些基本构建块处理信息的方式与经典计算机不同,而且可能更快。量子位存储量子信息的时间越长,它在量子计算机中的应用潜力就越大。

    自2020年成立以来,SQMS研究团队一直致力于了解transmon量子位中误差和退相干的来源。这种类型的量子位在由衬底(如硅或蓝宝石)顶部的金属铌层组成的芯片上图案化。许多人认为这些超导量子位是量子计算机最先进的平台。美国和世界各地的科技公司也在探索它们。

    然而,科学家们仍然必须克服一些挑战,量子计算机才能实现他们解决以前无法解决的问题的承诺。用于创建这些量子位的材料的特定特性可能导致量子信息的退相干。在SQMS,对这些特性和损失缓解策略进行更深入的科学理解是一个活跃的研究领域。

    为了使量子位使用寿命更长,请关注材料

    研究transmon量子位损耗的SQMS科学家指出,铌表面是罪魁祸首。这些量子位是在真空中制造的,但当暴露在空气中时,铌表面会形成氧化物。尽管这个氧化物层很薄——只有大约5纳米——但它是能量损失的主要来源,并导致更短的相干时间。

    Romanenko说:“我们之前的测量表明,铌是这些量子位的最佳超导体。虽然金属损耗接近零,但铌表面氧化物是有问题的,也是这些电路损耗的主要驱动因素。”。

    SQMS的科学家们建议在制造过程中对铌进行封装,使其永远不会暴露在空气中,因此不会形成氧化物。虽然他们对哪种材料最适合封盖有一个假设,但确定最佳材料需要进行详细研究。因此,他们用不同的材料,包括铝、钽、氮化钛和金,系统地测试了这项技术。

    每次尝试覆盖层时,SQMS的科学家都会在费米实验室、埃姆斯国家实验室、西北大学和坦普尔大学的材料科学实验室使用几种先进的表征技术分析材料。量子比特的性能是在费米实验室SQMS量子车库的稀释冰箱内测量的。这种低温设备将量子位冷却到绝对零度以上一点点。结果表明,与没有覆盖层(包含氧化铌层)的样品相比,研究人员可以制备出相干提高2到5倍的量子位。

    研究小组发现,封端过程提高了研究中探索的所有材料的一致性时间。在这些材料中,钽和金被证明是实现更高相干时间的最有效材料,平均相干时间为0.3毫秒,最大相干时间高达0.6毫秒。这些结果进一步揭示了这些量子位中损耗的性质、层次和机制。发现它们是由非晶氧化物和界面的存在所驱动的。

    “在制造量子位时,有许多或多或少隐藏的变量会影响性能,”费米实验室的科学家、SQMS纳米制造小组和工作组负责人Mustafa Bal说。“这是第一次在不同的制造设施中,在固定几何形状的芯片上,一次非常仔细地比较一种材料变化和一种工艺变化。这种方法确保了我们开发出可重复的技术来提高量子位的性能。”

    连贯时间:我们已经走了多远

    作为SQMS中心国家纳米制造工作组的一部分,这些团队在不同的设施中制造和测试量子位。费米实验室领导了由Bal领导的SQMS纳米制造小组,在芝加哥大学普利兹克纳米制造厂制造量子位。其他设施包括拥有量子铸造厂的量子计算公司Rigetti Computing和美国国家标准与技术研究所博尔德实验室。两者都是SQMS中心的旗舰合作伙伴。在Rigetti的商业铸造厂制造芯片证明,该技术易于在行业中复制和扩展。

    Rigetti计算机公司量子系统高级副总裁Andrew Bestwick表示:“在Rigetti计算公司,我们希望制造尽可能好的超导量子位,以制造尽可能最好的量子计算机,而以可复制的方式延长量子位的寿命一直是最困难的问题之一。”。“这是该领域能够在二维芯片上实现的领先的transmon相干时间之一。最重要的是,这项研究以对量子位损耗的科学理解为指导,从而在不同实验室和我们的制造设施中实现了再现性。”

    在NIST,科学家们对使用量子技术对光子、微波辐射和电压进行基本测量感兴趣。“这是一个伟大的团队努力,也是一个很好的旗帜,它表明了我们已经走了多远,也表明了我们仍然面临的挑战,”NIST物理学家Peter Hopkins说,他领导着超导电子小组,也是SQMS中心国家纳米制造工作组的主要成员。

    在这项工作之后,SQMS的研究人员继续进一步推动量子位的性能前沿。下一步包括设计创造性和稳健的纳米制造解决方案,将这项技术应用于其他transmon量子位表面,以消除这些器件中存在的所有损耗界面。在其上制备这些量子位的底层衬底也代表了下一个主要的损耗源。SQMS的研究人员已经在努力研究和开发适合量子应用的更好的硅片或其他低损耗衬底。

    此外,SQMS的科学家们正在努力确保相干研究的这些进展能够在具有几个互连量子位的更复杂的芯片架构中得到保留。

    SQMS量子技术路线图

    鉴于SQMS中心合作的广度,该中心的愿景和使命是多重的。研究人员试图提高量子计算机构建块的性能,并将这些创新应用于量子处理器的中型原型中。

    在SQMS,两个主要的超导量子计算平台正在探索中:基于2D传输量子比特芯片和基于3D腔的架构。对于基于芯片的处理器,SQMS研究人员与Rigetti等行业合作伙伴携手合作,以提高这些平台的性能和可扩展性。

    目前,来自费米实验室和里盖蒂的SQMS研究人员已经联合开发了一种9量子位处理器,该处理器融合了这些表面封装的进步。该芯片正在费米实验室的SQMS量子车库中安装。它的表现将在未来几周内进行评估和基准测试。

    对于基于3D腔的平台,费米实验室的科学家们一直在努力将这些量子位与超导射频腔集成。科学家们最初为粒子加速器开发了这些空腔,费米实验室在制造世界上最好的SRF空腔方面积累了数十年的经验,证明了光子寿命长达2秒。当与transmon量子位结合时,这些腔也可以用作量子计算平台的构建块。这种方法有望实现更好的一致性、可扩展性和量子位连接性。到目前为止,费米实验室的科学家已经在这些腔-量子位组合系统中实现了长达几毫秒的相干。

    Romanenko说:“我们知道如何制造世界上最好的空腔,但费米实验室正在建设的3D平台的成功在很大程度上也取决于我们能在多大程度上提高这些用于控制和操纵空腔中量子态的传输量子比特的性能。”。“所以,这有点一举两得。在我们推动转型3D技术的同时,我们还与业界合作,在基于2D芯片的量子计算平台上取得重要进展。”

    超导量子材料与系统中心是美国能源部五个国家量子信息科学研究中心之一。SQMS由费米国家加速器实验室领导,由30多个合作机构——国家实验室、学术界和工业界——共同努力,在量子信息科学领域取得变革性进展。该中心利用费米实验室在建造复杂粒子加速器方面的专业知识,以最先进的量子位和超导技术为基础,设计多量子位量子处理器平台。SQMS将与嵌入式行业合作伙伴携手合作,在费米实验室建造一台量子计算机和新的量子传感器,这将带来前所未有的计算机会。

相关报告
  • 《IBM公司计划与费米国家加速器实验室(Fermilab)的量子材料合成中心(SQMS Center)合作,以推进关键的量子信息科学计划》

    • 编译者:李晓萌
    • 发布时间:2024-08-20
    • IBM公司作为超导量子材料与系统中心(SQMS Center)的新合作伙伴加入,该中心是由费米实验室主持的美国能源部国家量子信息科学研究中心,已获得美国能源部科学、科学计划办公室的批准。作为一个主要的国家和国际研究中心,SQMS致力于推进关键量子技术,重点是超导量子系统。IBM是开发超导量子计算技术的行业领导者。此次合作旨在利用这两个组织的优势,解决量子计算、通信和超导量子平台大规模部署中的关键障碍。 SQMS中心主任Anna Grassellino表示:“我们欢迎IBM加入SQMS合作,该合作汇集了一些世界顶尖的超导材料、器件和量子系统专家。此次合作旨在利用我们互补的技术优势和共同的目标,推动超导量子系统朝着容错量子计算机的方向发展。”。 SQMS中心汇集了代表国家实验室、工业和学术界的30多个合作机构。这种多样化的合作将来自世界各地的500多名专家团结在一起,共同推动量子信息科学的变革性进步。 作为合作的一部分,IBM打算专注于五个关键领域:大规模低温学、超导量子比特噪声源、量子互连、基础物理学的量子计算应用和量子劳动力发展。 费米实验室主任Lia Merminga表示:“费米实验室和SQMS中心是开发这些关键技术并大规模生产的理想场所。”。“我们在为加速器建造大型复杂的超导低温系统方面拥有数十年的经验,并采用先进的仪器来推进我们的科学使命。量子信息科学的进步是国家的优先事项,费米实验室深度参与了这一进展。” 大规模低温学 SQMS和IBM打算共同努力,推进将量子计算机扩展到大规模数据中心的关键技术。SQMS已经在费米实验室为更高效的大规模毫开尔文低温提出了新的解决方案。低温学的这些发展将包括世界上最大的稀释制冷机,用于托管基于3D超导射频(SRF)的量子计算和传感平台,称为Colossus。IBM将提供实用的信息和规范,以扩大Colossus的影响力。这包括开发一个基于LHe/N2工厂的大规模冷却系统,该系统将适合IBM未来的大规模商业量子计算系统。 高质量和高密度量子互连 SQMS正在为费米实验室正在开发的量子计算平台设计和原型制作基于3D SRF平台的高质量和高密度量子互连。这些发展也适用于扩展基于芯片的模块化系统。费米实验室和IBM的目标是探索量子链路作为商业量子系统的一部分的可行性和可用性,重点是高质量的微波电缆。 量子比特和处理器的降噪 作为SQMS中心的一部分,IBM和SQMS合作伙伴打算共同努力,进一步科学理解限制超导量子比特性能的机制,并为所谓的“1/f通量噪声”减排开发实用方案。 量子计算系统科学应用的发展 SQMS合作伙伴和IBM计划推进量子计算系统基于物理的应用研究。例如,在凝聚态物理学中,研究人员旨在探索使用IBM的实用规模处理器来支持量子多体动力学模拟,其复杂性接近量子优势机制。对于高能物理学,合作伙伴将探索晶格量子场论的模拟。 量子劳动力发展计划 为了吸引和培养下一代多样化的量子劳动力,SQMS建立了几个成功的劳动力发展项目,包括与美国能源部资助的其他四个国家量子信息科学研究中心(NQISC)共享的美国量子信息科学学院。IBM拥有一个强大的量子教育计划,该计划使全球数百万学习者受益,并通过提供构建量子劳动力的工具,帮助IBM量子网络内的财富500强公司、大学、实验室和初创公司提供行业和领域专业知识。SQMS和IBM计划联手加强国家量子劳动力发展计划。 “随着我们加速构建大规模、容错的量子计算机,我们需要解决和扩展复杂的挑战,如高效、大规模的制冷以及高密度、低损耗的量子互连,并加深我们对噪声源以及如何减少噪声源的理解,”IBM量子研究员兼副总裁Jay Gambetta说。“计划参与SQMS中心的研究是推进我们大规模量子计算路线图的支柱。除了合作突破量子硬件障碍外,IBM和费米实验室还打算共同推动量子计算的科学应用,并建立一支量子就绪的劳动力队伍。”
  • 《英国代表团访问美国费米国家加速器实验室,就量子网络研究进行合作》

    • 来源专题:计量基标准与精密测量
    • 编译者:李晓萌
    • 发布时间:2024-02-29
    • 研究人员正在世界各地合作,使用量子科学对信息进行编码,以执行强大的计算并在网络中分发信息。 11月15日,英国研究人员代表团访问了美国能源部费米国家加速器实验室,亲眼目睹了该实验室为推进量子信息科学所做的努力。 英国和美国在量子研究合作方面并不陌生。2021年,美国和英国发表联合声明,为两国合作应对量子信息科学领域的一些最大挑战奠定了基础。 代表团代表了来自英国政府、工业界和学术界的量子科学与技术研究人员。他们会见了费米实验室的领导团队,并讨论了在量子网络方面进行合作的机会。 新兴技术理事会实验室副主任Panagiotis Spentzouris详细介绍了实验室在量子网络方面的工作。 费米实验室是伊利诺伊州快速量子网络的领导机构。代表团参观了费米实验室的量子网络实验室,这是费米实验室提供的两个IEQNET节点之一。该网络通过光纤电缆在费米实验室和阿贡国家实验室之间,以及西北大学芝加哥校区和国立大学埃文斯顿校区之间分发纠缠的量子信息。有了这个网络,研究人员正在为量子互联网奠定基础。特别是,他们可以测试连接到这个网络的不同量子系统。 代表团还参观了费米实验室超导量子材料与系统中心的实验室空间。它是通过2018年《国家量子倡议法案》签署成立的五个美国能源部国家量子信息科学研究中心之一。今年早些时候,两家英国机构,皇家霍洛威大学和国家物理实验室,受邀加入SQMS中心的30家合作机构。目前正在制定合作研究和发展协议,以促成这些重要的新伙伴关系。 在参观了最近落成的SQMS量子车库后,代表团以与费米实验室领导团队的闭幕式结束了他们的访问。