《铂 - 石墨烯燃料电池催化剂显示出优于块状铂的稳定性》

  • 来源专题:纳米科技
  • 编译者: 郭文姣
  • 发布时间:2019-09-20
  • “最近有人推动使用不含铂的催化体系,但问题是到目前为止还没有一种系统可以同时匹配催化活性和铂的耐久性,”Alamgir说。

    乔治亚理工学院的研究人员试图采用不同该研究于9月18日发表在“高级功能材料”期刊上并得到国家科学基金会的支持,他们描述了使用由石墨烯层支撑的原子级薄膜铂的几个系统 - 有效地最大化了整个表面铂的面积可用于催化反应并使用少量的贵金属。

    大多数铂基催化体系使用化学键合到载体表面的金属纳米粒子,其中粒子的表面原子完成大部分催化作用,表面下原子的催化潜力从未像表面原子一样充分利用。 ,如果有的话。

    此外,研究人员表明,至少两个原子厚度的新铂膜在解离能中胜过纳米粒子铂,这是去除表面铂原子的能量成本的量度。该测量结果表明,这些薄膜可以制造出更具持久性的催化体系。

    为了制备原子级薄膜,研究人员使用了一种称为电化学原子层沉积的工艺,在石墨烯层上生长铂单层,从而形成具有一个,两个或三个原子层原子的样品。然后,研究人员测试了样品的解离能,并将结果与??石墨烯上单个铂原子的能量以及催化剂中常用的铂纳米粒子的能量进行了比较。

    “这项工作的核心问题在于,金属和共价键合的结合是否有可能使铂 - 石墨烯组合中的铂原子比通常用于催化剂中的大块铂的对应物更稳定。金属粘合,“Seung Soon Jang说,他是材料科学与工程学院的副教授。

    研究人员发现,薄膜中相邻铂原子之间的结合基本上将力与薄膜和石墨烯层之间的结合在一起,从而在整个系统中提供增强作用。在两个原子厚的铂膜中尤其如此。

    “通常低于一定厚度的金属薄膜不稳定,因为它们之间的粘合不是方向性的,它们倾向于相互滚动并聚集形成颗粒,”Alamgir说。 “但石墨烯不是这样,它以二维形式稳定,甚至一个原子厚,因为它在相邻原子之间具有非常强的共价键。因此,这种新的催化体系可以利用石墨烯的定向键合支持原子级薄的铂金薄膜。“

    未来的研究将涉及进一步测试薄膜在催化环境中的表现。研究人员在早期对石墨烯 - 铂薄膜的研究中发现,该材料在催化反应中表现相似,无论哪一侧 - 石墨烯或铂 - 是暴露的活性表面。

    “在这种配置中,石墨烯并不是与铂金分开的实体,”Alamgir说。 “他们一起合作。所以我们相信,如果你暴露石墨烯一面,你会得到相同的催化活性,你可以进一步保护铂金,可能进一步提高耐久性。”

    ——文章发布于2019年9月18日

相关报告
  • 《硒锚可以提高铂燃料电池催化剂的耐久性》

    • 来源专题:纳米科技
    • 编译者:郭文姣
    • 发布时间:2019-09-09
    • 铂长期以来被用作催化剂以使氧化还原反应成为燃料电池技术的核心。但这种金属的高成本是阻碍燃料电池与更便宜的汽车和家庭供电方式竞争的因素之一。 现在佐治亚理工学院的研究人员开发出一种新的铂基催化体系,它比传统的商业体系更耐用,并且具有更长的使用寿命。从长远来看,新系统可以降低生产燃料电池的成本。 该研究于7月15日在ACS期刊Nano Letters上发表,该研究人员描述了一种解决铂催化剂降解的关键原因之一的可能的新方法,即烧结,即铂颗粒迁移和聚集在一起的过程,降低铂的比表面积并导致催化活性下降。 为了减少这种烧结,研究人员设计了一种方法,使用元素硒将铂颗粒固定在碳载体材料上。 “有一些减少烧结的策略,例如使用尺寸均匀的铂颗粒来减少它们之间的化学不稳定性,”佐治亚理工学院访问研究生曹正明说。 “这种使用硒的新方法在铂和碳载体材料之间产生了强烈的金属 - 载体相互作用,从而显着提高了耐久性。同时,铂颗粒可以使用并保持在较小的水平,从而获得高催化活性。比表面积增加。“ 该过程开始于将纳米级的硒球加载到商业碳载体的表面上。然后将硒在高温下熔化,使其扩散并均匀地覆盖碳的表面。然后,使硒与盐前体反应生成铂,以产生直径小于2纳米且均匀分布在碳表面上的铂颗粒。 硒和铂之间的共价相互作用提供了将铂颗粒稳定地固定在碳上的强大联系。 “由于其作为催化剂的高活性和耐久性,所得到的催化剂体系非常显着,”佐治亚理工学院和埃默里大学Wallace H. Coulter生物医学工程系教授和Brock家庭主席Younan Xia说。 由于纳米级铂的比表面积增加,新催化体系最初显示出比现有商业铂 - 碳催化剂的原始值高3.5倍的催化活性。然后,研究小组使用加速耐久性测试对催化系统进行了测试。即使在20,000次循环的电势扫描之后,新系统仍然提供的催化活性是商业系统的三倍以上。 研究人员在耐久性试验的不同阶段使用透射电子显微镜检查为什么催化活性仍然很高。他们发现硒锚有效地保留了大部分铂颗粒。 “经过20,000次循环后,大部分颗粒残留在碳载体上,没有分离或聚集,”曹说。 “我们相信这种催化体系作为提高铂催化剂耐久性和活性的可扩展方式具有巨大潜力,并最终提高了将燃料电池用于更广泛应用的可行性。” ——文章发布于2019年9月6日
  • 《青岛能源所成功制备石墨炔基高效燃料电池阴极催化剂》

    • 来源专题:中国科学院文献情报先进能源知识资源中心 |领域情报网
    • 编译者:guokm
    • 发布时间:2018-10-24
    • 面临环境和能源方面的种种问题,新能源汽车产业获得了蓬勃发展。据彭博新能源财经网(Bloomberg NEF)报道,截止到2018年8月30日之前,全球电动汽车的累计销量约达到400万辆。电动汽车有别于传统汽车的重要组件是其电池系统。其中,燃料电池采用氢气作为原料,产物为水,是一种污染少、能量转化效率高的理想电池系统。然而,面临大规模商业化,燃料电池在成本方面还具有较大的阻力,其主要表现在电池阴极需要大量的贵金属铂基催化剂。铂基材料价格昂贵,储量有限,大大阻碍了燃料电池的可持续性、大规模应用。因此,迫切需要制备一种性能优异、价格低廉、储量丰富的新型阴极催化剂以替代铂基催化剂。   针对以上问题,在李玉良院士的指导下,青岛能源所黄长水研究员带领碳基材料与能源应用研究组设计了一种苯环中部分碳原子与氢相连的新型石墨炔基碳材料(HsGDY)催化剂。该材料的设计和实现是在研究组前期成功合成与应用大量石墨炔基材料的基础上完成的。相关成果已发表于国际著名期刊Nature Communications (Nat. Commun. 2018, 9, 3376)上,并被选为Highlight工作。   得益于HsGDY的独特结构,在对其进行后处理过程中,碳基材料与能源应用研究组准确控制了氮的掺入类型,选择性掺入对燃料电池阴极电催化最有效的吡啶氮原子,从而实现了优异的催化性能。同时,HsGDY具有六边形的大孔,其分子孔径达1.63 nm,有利于催化反应过程中反应物和产物的传质。通过电化学测试发现,吡啶氮掺杂的HsGDY在碱性条件下表现出了优于商业碳载铂催化剂的超高活性。其在0.85 V电位下的电流密度为商业碳载铂催化剂的1.6倍,同时具有比碳载铂更好的稳定性和抗甲醇中毒能力。吡啶氮掺杂的HsGDY作为新型燃料电池阴极催化剂替代传统铂基催化剂,展现了巨大的潜力。这种通过碳材料结构设计,实现异原子的准确掺杂的方法,也为制备其他掺杂型纳米材料提供了新的思路。   该研究得到了国家自然科学基金,中国科学院前沿重点项目,山东省自然科学基金的支持。