《石墨亲锂还是疏锂?》

  • 来源专题:可再生能源
  • 编译者: pengh
  • 发布时间:2020-07-03
  • 自上世纪90年代被商业化以来,由于其高能量密度以及长循环寿命,锂离子电池被广泛应用于便携式电子设备、电动汽车等领域。近年来,为了进一步提高锂电池的能量密度,金属锂负极由于其超高的理论容量(3861mAh/g)再一次引起了全球科研工作者的广泛关注和强烈兴趣。为应对金属锂负极循环过程中所存在的体积变化大等问题,构筑金属锂基复合材料被认为是一种有效的解决策略。碳材料具有较高的导电率和较轻的密度,常被用于与金属锂进行复合。然而,大量的研究表明金属锂和碳材料的润湿性差,在进行复合之前,需要对碳材料进行表面亲锂性处理。

    石墨作为锂离子电池最常用的碳基负极材料,其与金属锂的润湿性对构筑金属锂-石墨复合负极极具指导意义。然而,石墨到底是亲锂的还是疏锂的?为回答这个疑问,来自同济大学的黄云辉教授、罗巍研究员和MIT的李巨教授进行合作,系统地研究了不同类型的石墨类碳材料与金属锂的浸润性,在《国家科学评论》(National Science Review, NSR) 发表研究论文《Is Graphite Lithiophobic or Lithophilic?》。

    首先,采用高定向热解石墨(highly oriented pyrolytic graphite, HOPG)作为测试样品,作者发现熔融态金属锂在HOPG表面的接触角为73°,表现出良好的亲和性。采用第一性原理对锂和石墨的亲和性进行仿真分析,计算结果也证实锂和石墨具有良好的亲和性。然而,金属锂在多孔石墨纸(porous carbon paper, PCP)上的接触角高达142°,展现出不浸润的状态。通过XPS分析,作者发现相比于HOPG,PCP表面有大量的含氧官能团。这些表面杂质会对锂和PCP的接触线(contact line)起到钉扎作用,导致PCP表现出不亲锂特性。

    为进一步论证这一设想,作者通过对PCP进行锂化来降低PCP的电化学电势并消除表面钉扎点。实验结果表明,锂化石墨纸 (lithiated PCP)与金属锂表现出优异的亲和性,并且由于其多孔的特性,金属锂在接触lithiated PCP后迅速穿过,最终呈现的接触角为52°。作者进一步通过商用石墨粉末与熔融态金属锂的润湿性实验来佐证这一结论,锂化石墨粉末可均匀分布在锂金属中。利用这一发现,作者成功地调控了石墨纸的亲锂性并制备出大片的锂-石墨复合负极材料,其与三元正极或硫/碳正极搭配的全电池中均表现出较好的循环稳定性。该工作不仅系统地研究了金属锂和石墨类碳材料的浸润性,还为构筑锂碳复合负极材料提供了一个全新的思路,为高能量锂电池开发助力。

相关报告
  • 《用新型二维碳素-石墨烯进行锂-硫电池阴极封装》

    • 来源专题:纳米科技
    • 编译者:郭文姣
    • 发布时间:2017-11-08
    • 硫阴极在锂硫电池(Li-S)仍然遭受他们的电子导电率低,不受欢迎的解散多硫化锂(Li2S n,3≤n≤8)物种进入电解液,和很大程度上体积变化周期。为了克服这些问题,必须对硫阴极进行有效的封装。通过粒子群优化(PSO)和密度泛函理论(DFT),我们预测了一种稳定的金属二维sp2杂化碳变异体(dhp -石墨烯)。这种碳片可以防止阴极进入电解液。然而,锂离子在电解液与阴极间的锂离子浓度的增加以及电荷放电周期中阴极与阳极之间的电位差,可以自由穿梭。此外,在dhp -石墨烯纳米带中发现了多用途的电子带结构和线性色散,但对dhp -石墨烯纳米管只有金属带结构。 ——文章发布于2017年11月02
  • 《二维石墨烯氧化物纳米片涂层有效解决锂枝晶问题》

    • 来源专题:中国科学院文献情报先进能源知识资源中心 |领域情报网
    • 编译者:guokm
    • 发布时间:2018-05-27
    • 锂金属电池是一款极具前景的高能量密度电池,其理论比容量高达3860 mAh/g,近10倍于锂离子电池。然而,锂金属电池存在一个致命缺陷,那就是在充放电过程中会产生大量枝晶,从而刺穿隔膜会引起电池短路,导致性能衰退甚至燃烧爆炸,因此亟需研究抑制锂枝晶生长的方法。 由伊利诺伊大学芝加哥分校Reza Shahbazian-Yassar教授课题组牵头的联合研究团队制备了新颖的二维石墨烯氧化物纳米片薄膜,作为保护层涂覆在玻璃纤维隔膜上,有效地抑制了锂枝晶的形成,从而显著地增强电池性能和循环寿命。研究人员通过喷雾热解方法将二维石墨烯纳米片(GOn)涂覆在玻璃纤维隔膜(GF)上,随后通过真空干燥处理,形成GOn修饰复合隔膜GOn-GF。扫描电镜表征显示,GOn均匀地嵌入到玻璃纤维GF的空隙中,从而有效地避免了GOn的堆叠和脱落,形成致密的二维涂层薄膜覆盖在GF表面,有助于锂离子快速传输。随后研究人员将制备的GF、GOn-GF隔膜应用于锂金属电池,并开展电化学性能测试进行对比研究。测试结果显示,在2 mA cm−2充放电电流密度下,采用无GOn修饰的GF隔膜电池经过80次循环后,电池容量就衰减了20%,但而当进一步增加循环次数到115次后,电池容量大幅衰减至初始状态的20%,库伦效率为80%;相反,采用GOn-GF隔膜的电池在经过160次循环后,电池容量仍可维持初始状态的83%以上,库伦效率接近100%,展现出更加优异的电池性能和循环稳定性。通过电化学阻抗谱测试发现,无GOn修饰的GF隔膜电池内部的界面传输电阻高达170 Ω,且循环后电池阻抗增加到了250 Ω,这主要是由于锂枝晶形成诱导高阻抗的固态电解质膜所致;相反,采用GOn-GF隔膜的电池内部界面传输电阻仅为70 Ω,且不会随着循环增大。研究人员指出,GOn-GF隔膜的电池性能提升主要得益于两方面改善,一是GOn-GF隔膜中二维石墨烯纳米片为锂离子提供了快速的传输通道增强电池充放电性能,二是有效地抑制了锂枝晶的形成增强了电池循环寿命。更为关键地是,该GOn涂层薄膜制备工艺简单、易于规模化且成本较低。 该项研究针对锂金属隔膜设计合成了新型的二维石墨烯氧化物纳米片保护涂层,增强锂离子的传输、抑制了锂枝晶的形成,增强了电池性能和循环寿命。为设计和开发高性能的锂金属电池提供了新的路径。相关研究工作发表在《Advanced Functional Materials》 。 (郭楷模)