《Nature报道具有多孔结构的液体材料》

  • 来源专题:海西院结构化学领域监测服务
  • 编译者: fjirsmyc
  • 发布时间:2015-11-20
  • 一个国际联合研究小组日前宣称,他们合成了世界首种具有永久性多孔结构的液体材料。这种液体对气体具有极强的吸纳和溶解能力,有望提升目前许多化学反应的反应效率,并在碳捕获等领域获得应用,相关论文发表在11月12日出版的《自然》杂志上(Nature, 2015, DOI: 10.1038/nature16072)。同期的“News and Views”栏目对这一研究进行了评述(Materials chemistry: Liquefied molecular holes)。

    英国贝尔法斯特女王大学Stuart L. James率领的国际联合研究小组设计了一种特别的化合物分子。这是一种中空的有机笼状分子,在其外围表面连接了可溶于周围溶剂的基团,而且这些“笼子”的开口很小,使得那些表面基团或大的溶剂分子不能阻塞于这些开口。

    James教授说,“包含永久孔隙的材料在技术上是重要的,它们被用于制造各种塑料产品和汽油产品。然而,这些多孔材料一直以来都局限于固体。”他们所做的就是“自下而上”地设计一种特殊的液体,这种液体组成分子的形状使其无法填满所有空间。他补充道,“正是由于中空的结构,这种液体能够溶解非常大量的气体,这些初步实验帮助我们了解这种新型材料,其结果显示了其在气体溶解方面可能会有长期应用。”

    研究人员最初是将在表面连上冠醚基团的中空有机“芯”结构溶解在冠醚溶剂来实现液体孔隙。为了优化气体吸收能力,该团队把尽可能多的笼状分子和溶剂混合在一起,与溶剂分子的数量比达到1:12。当与甲烷接触时,这种液体能够比单独的溶剂多吸收七倍的气体。

    但冠醚很难合成,并且黏度很大,流动缓慢。所以来自利物浦大学的合作者Andrew I. Cooper和Rebecca L. Greenaway通过在有机空心笼上覆盖一种二胺的混合物,开发了另一种多孔的液体,并将其溶于六氯丙烯。所得的多孔质液体的流动性是冠醚系材料的十倍。研究人员只用一步就合成了被覆盖的笼状分子,并且该溶剂可以直接在市场上买到。

    在早期的工作中,美国橡树岭国家实验室的Shannon M. Mahurin和戴胜(Sheng Dai)及其同事们创造出了有液体状高分子表面涂层的空心胶体二氧化硅纳米粒子(Angew. Chem. Int. Ed., 2015, DOI:10.1002/anie.201409420),但相比之下,这种新的多孔液体更容易在分子层面上进行修饰。戴评论说:“这种液体将开辟新的领域,让我们重新思考和认识孔隙。”

    (综合x-mol科技日报 报道)

    更多阅读:ACS《化学化工新闻》周刊报道物理学家组织网报道

  • 原文来源:http://cen.acs.org/articles/93/i45/Liquid-HolesThanks-Chemistry.html
相关报告
  • 《“不正常”的MOF:《Nature》报道具有奇特吸附性质的金属有机框架材料》

    • 来源专题:海西院结构化学领域监测服务
    • 编译者:fjirsmyc
    • 发布时间:2016-04-13
    • 金属有机框架(MOF)是近年来得到广泛重视的一种新型材料,其纳米多孔结构的孔洞大小、形状、功能都可调控,这样就能实现多种其他材料无法企及的功能。例如,以可控的方式储存以及释放气态或液态化合物,这对于气体分离、氢气储存甚至靶向药物递送都有重要意义。 一般来说,MOF的吸附能力会随着压力、温度甚至光照而变化。在正常情况下,外界压力越大,其吸附的物质越多,直到达到饱和。然而,4月8日出版的《自然》期刊报道了德国德累斯顿工业大学(Technische Universität Dresden)教授 Stefan Kaskel 为首的德国和法国研究团队研发的一种“不正常”的MOF材料,名为DUT-49,它的吸附性质堪称奇特:当压力增加到一定程度后,这种材料会突然收缩,并“吐出”之前已经吸附的气体。这种气-固相互作用的新现象被Kaskel等人命名为“负性气体吸附”(Nature, 2016, DOI: 10.1038/nature17430)。 左图:DUT-49三维结构示意图,右图:扫描隧道显微镜下的DUT-49晶体;图来源:德累斯顿工业大学(https://tu-dresden.de) DUT-49由碳骨架和铜原子通过自组装而形成,是一种极为多孔的粉末——每1克这种材料的内表面积为5000平方米!所以DUT-49能够吸附相当于其重量三分之一的甲烷。 研究人员在测试DUT-49的气体吸附性质时,意外地发现了这种负性气体吸附现象。当压力增加到一定程度后,材料突然收缩并释放之前已吸附的气体,进而进一步提高整个系统的压力。一开始研究人员们还以为是仪器发生了故障,因为数以百万计的其他能吸附气体的材料中没有一种会表现的如此“不正常”。然而,接下来的进一步原位粉末X-射线衍射以及气体吸附试验及模拟,确认了这种负性气体吸附现象的确存在。 图来源:Technische Universität Dresden 该团队也已经能够描述其机制:存储在DUT-49孔洞中的气体分子与其固体结构产生了很强的相互作用;随着吸附的气体量增加,这种相互作用会干扰该DUT-49中的原子排列,并最终导致其收缩。这个特殊的吸附行为已经被丁烷和甲烷的测试所证实,预计也适用于其他气态化合物。 图来源:tu-dresden.de DUT-49这种“不正常”的吸附性质,开辟了研究这种弹性多孔MOF材料及其独特性能的新研究领域,可能会促进救生器材、纳米开关、纳米传感器等等应用领域的研发。 (摘自X-MOL化学平台)
  • 《采用类骨多孔结构对增材制造部件的内部填充结构进行优化》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2018-12-27
    • 在增材制造中,用户在切片软件中会选定内部填充方式。填充方式对制造过程和产品的物理特性有显著影响。一般来讲,高比例的填充会让产品承受外载荷能力更强,但是会花费更多的材料和制造时间。为了设计轻质但是具有更好机械性能的产品,为用户提供优秀的填充结构布置方式是增材制造软件的一个发展趋势。 骨由外壳的皮质骨和内部的骨小梁组成,这种复合结构是自然界优化的结果。Wolff定律指出,骨组织的形成是受到外载荷激励的过程。作为一种自适应优化的结果,骨小梁的微结构沿着主应力方向展开。这种自然优化的复合材料轻质而坚韧,在各种力学环境下具有极好的稳定性和破坏容许性。 丹麦科技大学的Wu等人提出了一种生成类骨微结构的方法。这种方法是在传统的基于体素的拓扑优化法的基础上进行了延伸。在已给定的外部载荷和零件形状下,对指定设计域中的局部材料分布进行优化来实现零件整体力学刚度的最大化。从优化结果来看,传统的拓扑优化方法所得的结构更为集中,无法起到填充零件内部的作用,而采用类骨微结构生成方法,能够得到整体力学刚度最优的填充结果。 不同的填充结构在受外载荷时的应力分布截然不同。为蜂窝结构所填充的小猫模型,可见在顶部受力时,应力传导主要通过颈部和尾巴。而采用传统拓扑优化所得的填充方式,将模型内部从受力位置到底部的区域全部填充,采用局部体积约束法填充的小猫模型在受力时各处的应力分布较为均匀,最大应力值显著降低。 自然界中的材料给我们这样一个启发:结构的健壮性来自于有组织的复杂形状与拓扑结构,而丹麦科技大学的学者们通过将局部体积约束的拓扑优化方法用于3D打印部件的内部填充结构设计,正是践行了这一规则。这种方法在各类增材制造部件的内部填充设计中有着广泛的应用前景。