《1月26日_2019-nCoV的传播动态》

  • 来源专题:COVID-19科研动态监测
  • 编译者: wangyb
  • 发布时间:2020-01-29
  • 研究认为新型冠状病毒肺炎比SARS具有更高的大流行风险,需要加强严控遏制其进一步蔓延。

    发表时间:2020年1月26日

    发表团队和机构:广东省疾病预防控制中心、广东省公共卫生研究所

    作者:Tao Liu, Jianxiong Hu, Min Kang, Lifeng Lin, Haojie Zhong, Jianpeng Xiao, Guanhao He, Tie Song, Qiong Huang, Zuhua Rong, Aiping Deng, Weilin Zeng, Xiaohua Tan, Siqing Zeng, Zhihua Zhu, Jiansen Li, Donghua Wan, Jing Lu, Huihong Deng, Jianfeng He, Wenjun Ma

    文章主要内容如下:

    研究人员从医疗记录、流行病学调查或官方网站,收集了2020年1月23日前确诊的2019-nCoV病例数据,以及从广东省疾病预防控制中心收集了2002~2003年广东省SARS病例资料。利用指数增长(EG)和最大似然估计(ML),研究人员估算了2019-nCoV和SARS的繁殖数(R)。结果显示,截至2020年1月23日,中国共发现830例2019-nCoV确诊病例,境外报告9例。2019-nCoV感染的平均潜伏期为4.8天。2019-nCoV和SARS患者从出现症状到隔离的平均时间分别为2.9天和4.2天。

    通过EG和ML估计,2019-nCoV的R值分别为2.90(95%置信区间:2.32-3.63)和2.92(95%置信区间:2.28-3.67),而SARS-CoV的相应R值为1.77(95% 置信区间:1.37-2.27)和1.85(95%置信区间:1.32-2.49)。

    研究人员还观察到从发病到隔离的时间呈下降趋势,2019-nCoV和SARS-CoV的R值也呈下降趋势。研究人员认为,2019-nCoV可能比2003年暴发的SARS具有更高的(全国或全球)大流行风险。但目前实施的公共卫生努力已显著降低了2019-nCoV的流行风险。然而,还需采取更加严格的控制和预防战略和措施,遏制其进一步蔓延。

  • 原文来源:https://www.biorxiv.org/content/10.1101/2020.01.25.919787v1
相关报告
  • 《2月7日_马来西亚2019-nCoV的传播动态》

    • 来源专题:COVID-19科研动态监测
    • 编译者:zhangmin
    • 发布时间:2020-02-13
    • 1.时间:2020年2月7日 2.机构或团队:马来西亚沙捞越大学计算机科学与技术学院 3.事件概要: 马来西亚沙捞越大学计算机科学与技术学院在medRxiv预印版平台发表论文“Transmission dynamics of 2019-nCoV in Malaysia”。 文章基于SEIR隔间模型开发了一种数学预测模型,旨在通过模拟2019-nCoV在马来西亚感染当地人后的传播动态,研究2019-nCoV的流行病学特征。在完全易感人群中引入单个病例的情况下,该模型能够预测下一个确诊病例。文章通过对获得的方程组进行了数值求解,并对仿真结果进行了分析,分析结果包含不采取防控措施导致的疾病影响。 4.附件: 原文链接:https://www.medrxiv.org/content/10.1101/2020.02.07.20021188v1
  • 《LANCET,1月31日,对2019-nCoV国内国际传播的现实及将来预测》

    • 来源专题:COVID-19科研动态监测
    • 编译者:zhangzx
    • 发布时间:2020-02-01
    • Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: a modelling study Prof Joseph T Wu, PhD * Kathy Leung, PhD * Prof Gabriel M Leung, MD Published:January 31, 2020DOI:https://doi.org/10.1016/S0140-6736(20)30260-9 Summary Background Since Dec 31, 2019, the Chinese city of Wuhan has reported an outbreak of atypical pneumonia caused by the 2019 novel coronavirus (2019-nCoV). Cases have been exported to other Chinese cities, as well as internationally, threatening to trigger a global outbreak. Here, we provide an estimate of the size of the epidemic in Wuhan on the basis of the number of cases exported from Wuhan to cities outside mainland China and forecast the extent of the domestic and global public health risks of epidemics, accounting for social and non-pharmaceutical prevention interventions. Methods We used data from Dec 31, 2019, to Jan 28, 2020, on the number of cases exported from Wuhan internationally (known days of symptom onset from Dec 25, 2019, to Jan 19, 2020) to infer the number of infections in Wuhan from Dec 1, 2019, to Jan 25, 2020. Cases exported domestically were then estimated. We forecasted the national and global spread of 2019-nCoV, accounting for the effect of the metropolitan-wide quarantine of Wuhan and surrounding cities, which began Jan 23–24, 2020. We used data on monthly flight bookings from the Official Aviation Guide and data on human mobility across more than 300 prefecture-level cities in mainland China from the Tencent database. Data on confirmed cases were obtained from the reports published by the Chinese Center for Disease Control and Prevention. Serial interval estimates were based on previous studies of severe acute respiratory syndrome coronavirus (SARS-CoV). A susceptible-exposed-infectious-recovered metapopulation model was used to simulate the epidemics across all major cities in China. The basic reproductive number was estimated using Markov Chain Monte Carlo methods and presented using the resulting posterior mean and 95% credibile interval (CrI). Findings In our baseline scenario, we estimated that the basic reproductive number for 2019-nCoV was 2·68 (95% CrI 2·47–2·86) and that 75?815 individuals (95% CrI 37?304–130?330) have been infected in Wuhan as of Jan 25, 2020. The epidemic doubling time was 6·4 days (95% CrI 5·8–7·1). We estimated that in the baseline scenario, Chongqing, Beijing, Shanghai, Guangzhou, and Shenzhen had imported 461 (95% CrI 227–805), 113 (57–193), 98 (49–168), 111 (56–191), and 80 (40–139) infections from Wuhan, respectively. If the transmissibility of 2019-nCoV were similar everywhere domestically and over time, we inferred that epidemics are already growing exponentially in multiple major cities of China with a lag time behind the Wuhan outbreak of about 1–2 weeks. Interpretation Given that 2019-nCoV is no longer contained within Wuhan, other major Chinese cities are probably sustaining localised outbreaks. Large cities overseas with close transport links to China could also become outbreak epicentres, unless substantial public health interventions at both the population and personal levels are implemented immediately. Independent self-sustaining outbreaks in major cities globally could become inevitable because of substantial exportation of presymptomatic cases and in the absence of large-scale public health interventions. Preparedness plans and mitigation interventions should be readied for quick deployment globally. Funding Health and Medical Research Fund (Hong Kong, China).