《美研究发现海葵摄取塑料微纤维》

  • 来源专题:中国科学院文献情报系统—海洋科技情报网
  • 编译者: liguiju
  • 发布时间:2019-04-08
  • 美华盛顿卡内基科学研究所的一项最新研究表明,海洋中的塑料碎片会随着食物一起被海葵吃掉,而白化的海葵比健康的海葵保留这些微纤维的时间更长。该项研究成果已发表在《环境污染》(Environmental Pollution)杂志上,这是首次对塑料微纤维与海葵之间的相互作用进行研究。海葵与珊瑚关系密切,可以帮助科学家了解珊瑚礁生态系统如何受到世界海洋中数百万吨塑料的影响。

    海洋中最常见的塑料类型之一是洗涤合成织物和海事设备(如绳索和渔网)破损产生的微纤维。世界各地的海洋都发现了微纤维,人类食用的鱼类和贝类中也开始出现微纤维。

    作者之一Romanó de Orte提到,塑料污染对于海洋和海洋中的动物来说是一个日趋严重的问题。我们想了解这些长期存在的污染物是如何影响脆弱的珊瑚礁生态系统的。塑料可能会被微生物误用作食物,也可能是其他有害污染物的载体。由于海葵与珊瑚关系密切,他们决定在实验室研究海葵,以更好地了解塑料对野外珊瑚的影响。

    大多数关于塑料污染的实验室研究使用的是塑料微粒,而不是微纤维。因此研究人员开始研究健康的海葵和那些失去了共生藻类的海葵是否消耗了微纤维,其中共生藻类正是海葵的营养来源,这种情况被称为漂白。而全球气候变化导致海洋温度升高,继而导致珊瑚礁白化。

    研究小组将三种不同的微纤维—尼龙、聚酯和聚丙烯——单独和与盐水虾混合用于未白化海葵和白化海葵。

    结果发现,当单独使用尼龙时,大约四分之一的未白化海葵会消耗掉尼龙,而另外两种微纤维一点都没被吸收。但是当微纤维与盐水虾混合时,80%的未白化海葵摄入了这三种微纤维。在没有食物的情况下,60%的白化海葵摄入了尼龙,20%摄入了聚酯,而与盐水虾混合时,80%的白化海葵与会摄入三种微纤维。

    虽然在第三天所有的微纤维都消失了,但是白化海葵在摄入微纤维后排出微纤维的时间比健康海葵要长。然而,在自然的海洋环境中,海葵和珊瑚会不断地摄入新的微纤维,使污染成为它们存在的一个长期条件。

    Caldeira解释道,研究表明,塑料污染和气候变化对珊瑚礁造成了双重打击,当珊瑚礁被海洋的高温漂白时,这些生物更有可能吃掉并保留这些塑料纤维。看起来全球变暖和海洋污染的影响不只是叠加在一起,而是成倍增加。

    这项研究由卡内基科学研究所和圣保罗研究基金会资助。

    (张灿影 编译)

    图片源自网络

  • 原文来源:https://carnegiescience.edu/news/sea-anemones-ingest-plastic-microfibers
相关报告
  • 《Scripps海洋学研究人员采用全球方法研究微塑料和微纤维》

    • 来源专题:中国科学院文献情报系统—海洋科技情报网
    • 编译者:liguiju
    • 发布时间:2019-09-20
    • Scripps海洋研究所的科学家正在努力了解海洋中的塑料降解,特别是称为微塑料和相关微纤维的较小颗粒。Scripps副研究员、海洋生物学家Dimitri Deheyn正在研究这些微材料的双重方法。他和博士后研究员Sarah-Jeanne Royer正在监测世界各地的微纤维,以更好地了解这些纤维如何进入和传播到环境中,同时还与工业界合作,找出限制塑料污染的可能途径并制定补救策略。 大多数微纤维是合成纤维,而且许多是基于石油的微纤维,使它们成为微塑料的一种形式。由于它们能够吸收更多的水和独特的化学结合特性,它们可以在许多纺织品中找到,包括衣服和清洁布,并且根据它们的超细性质来定义。这些纤维在洗涤纺织品和日常穿着时流入环境,并且正在成为科学家和环保主义者日益关注的问题。NOAA将微塑料定义为长度小于5毫米的任何塑料颗粒。这些微小的颗粒是由较大的塑料和合成材料的分解造成的,并且越来越受到环境和公共卫生官员的关注,他们担心吃鱼和其他摄入微塑料的海产品的影响。然而,研究人员仍在了解这些粒子对生态系统和人类的影响及范围。 Deheyn在发现这些材料在他实验室使用的成像条件下发出荧光后,对微纤维研究产生了兴趣。 Deheyn利用生物体产生的颜色或光线的变化作为早期指标,特别是在接触常规污染物如微量金属或与气候变化相关的环境变化时。近年来,Deheyn注意到他的图像中有越来越多的发光纤维。“当我看到这些纤维在我的样品中发出荧光时,我的第一反应是清洁显微镜的镜片,但我意识到这些纤维实际上是我样品的一部分,”Deheyn说。该研究的合作者Royer则专门研究环境中塑料产生的温室气体排放、塑料退化、海洋垃圾的命运和通道以及北太平洋的垃圾补丁。 Deheyn对荧光污染物的观察带来了新的机遇。他和研究伙伴一直在利用荧光开发新技术来检测从水样中滤出的微塑料。该技术由工程研究生Jessica Sandoval开发,称为自动微弹性标识符(AMI),旨在通过识别光纤的自动化过程取代人工计数。研究人员首先在紫外线照射下对滤光片进行成像,使塑料发出荧光。 Sandoval开发了软件来量化每个过滤器上的塑料量,并使用图像识别生成塑料特征的信息。“这是一个令人兴奋的第一步,使用自动化技术来协助监测这种普遍存在的海洋污染物,” Sandoval说,“通过这些技术,我们可以更轻松地处理来自全球的样品,并更好地了解微塑料的分布。” 作为Deheyn努力了解全球微纤维存在的一部分,研究人员已经使用该技术分析来自世界各地的水样。到目前为止,他发现微纤维可以在世界各地的样品中找到,包括在北极圈。“我们最终希望在全球范围内提供微纤维分布图,以便人们可以更好地评估我们食品中存在这些微小合成材料的效果,”Deheyn说。 除了从水、空气和沉积物样品中测量这些微纺织品之外,Deheyn和Royer的工作标志之一是分析50年来从斯克里普斯码头采集的水样,以确定这种污染的数量随时间的变化情况。这项研究还将展示哪种类型的纤维是最不易生物降解的,并且在过去50年中这种污染在何时变得明显。研究人员希望解决两个基本问题:原始材料在海洋环境中会如何降解,以及供应链中的哪个过程会改变纺织品的降解。 (於维樱 编译) 图片源自网络
  • 《发现新的“可塑之材” 石头竟能被改造成塑料》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心—领域情报网
    • 编译者:冯瑞华
    • 发布时间:2022-02-08
    • 当你拿起一只购物袋或矿泉水瓶,很难想象它可能是石头做的。 凭借柔韧、可塑、轻巧、廉价等特性,塑料为人类生活带来诸多便利,但又因不可降解的缺陷引发“白色污染”,对自然环境产生威胁。近年来,越来越多的科研人员探寻新的“塑料”,从而替代传统的石油基塑料,大自然中普遍存在的石头(矿物)也被视为“可塑之材”。 1月24日,国际期刊《先进材料》刊登了浙江大学化学系刘昭明研究员团队的研究成果——用无机离子聚合的方法构建出具有周期性缺陷结构的无机矿物材料。这种含有80%以上的磷酸钙矿物和20%不到的高分子的“石头”展现出了和高分子塑料类似的柔韧性和近似的力学性能,硬度更高且耐火,取材于大自然,又能回归自然,继续参与地质循环。 简化降解过程 塑料替代品不妨“就地取材”? 人们日常使用的塑料主要源于石油,而石油基的塑料原本不存在于自然界,不具备可降解性。现已应用的可降解塑料,其降解条件并不简单,短期内依然会形成“白色污染”。 2021年9月,国家发展改革委、生态环境部联合印发《“十四五”塑料污染治理行动方案》,提出科学稳妥推广塑料替代产品,比如加大可降解塑料关键核心技术攻关和成果转化,不断提升产品质量和性能,降低应用成本。 “从化学或材料学的角度看,实现塑料降解的关键,是要研究有机共价键断裂的方法,或者设计易于断裂的共价键。” 刘昭明介绍,有科学家提出通过生物基的材料替代塑料,例如用聚乳酸。 自然界存在的地质矿物就是环境的一部分,并参与到地质循环之中。研究团队注意到,如果能将这些矿物变成类似塑料的材料,就可能直接避免塑料污染和循环的问题,且矿石成本低廉,适合推广普及。 材料的柔韧性或者脆性很大程度上反映了材料形变能力的大小。矿物硬而脆、难以塑形,要想替代塑料,必须先改变自身的脆性。 “矿物材料一般内部是高度交联的离子或者共价网络,而塑料,我们以热塑性塑料为例,内部主要是链状高分子。” 刘昭明说,可以想象一个很硬的三维网络结构,如果要移动其中的一个支点,需要整个网络结构都有变化,否则那个点就要破裂。相比之下,一堆缠绕排列的线,线本身及线之间都可以变动,整个结构中的支点都可以相对自由地运动。 刘昭明解释道,这种微观结构的差异导致两种材料宏观上性质不同。矿物的这种刚性网络使其坚硬,但是变形能力很差。加热可以降低高分子链间的相互作用,使热塑性塑料在高温下熔化再凝固,实现塑料制备。 矿石化刚为柔 性状功能与塑料大同小异 此次研究中,研究团队旨在让矿物材料的内部更像“链”而不是传统的“网络”。通过利用这些结构可变的矿物去组成复合矿物,从而设计基于矿物的塑料替代材料。 大自然中的贝壳、骨骼、牙齿给了他们很大启发。 “这些天然生物矿化材料的主要成分是无机矿物和少量的有机大分子和高分子。正是这少量的大分子和高分子控制着无机矿物的尺寸、取向、形貌。” 刘昭明说,这启发我们去探索相似的调控手段,去实现无机离子聚合的调控。 研究团队选用了聚丙烯醇(PVA)和海藻酸(SA)这两种高分子,将两者加入到磷酸钙离子寡聚体凝胶中,形成了一种有机-无机分子尺度的复合材料。据介绍,这两种高分子从化学官能团上而言,与骨头中的胶原有一定相似性。 “我们提出的Hybrid Mineral(复合矿物),主要是由80%以上的无机磷酸钙组成,剩下为有机高分子聚乙烯醇和海藻酸。” 刘昭明表示,这些无机纳米纤维通过介观尺度有机物粘接形成宏观尺度的块体材料,即为复合矿物。 透射电镜图像显示,研究团队得到的无机磷酸钙纳米纤维和常规合成中得到的羟基磷灰石有着不同的结构:原本羟基磷灰石中的钙离子是周期性排列的,而在团队制备的复合矿物样品中,钙离子会有周期性的缺失。 刘昭明解释道,正是由于钙离子的周期性缺失,让原本稳定、刚性的无机离子网络变为结构可变、类似于3-4条“无机离子链”平行排列的结构。这样的结构降低了磷酸钙内部的交联密度,离子之间的距离可以相对更容易的拉长或压缩,从而使无机结构具有一定的可弯曲性。 经实验测试,这一复合矿物拉伸强度在20兆帕左右,弹性模量在600兆帕左右,整体表现出类似塑料的柔韧性,性能与传统塑料材料类似,可以对它进行拉伸或者弯曲。此外,复合矿物由于高无机含量,硬度也比一般的塑料高,在0.8吉帕左右,不太容易起划痕。 模拟环保实验 复合矿物与环境基本相容 现如今,除了可降解塑料外,纸制品、竹木制品等塑料替代品,一定程度上可缓解“白色污染”的加剧,在防水性、柔韧性、防火性等方面,却未能完全替代塑料制品,有待新的替代品填补缺陷。? 2019年,该团队曾在《自然》杂志发表“无机离子聚合”技术,成功制备无机离子寡聚体,实现像做塑料那样制备宏观的无机矿物材料,为此次复合矿物的研究打下基础。 研究团队发现,相比一般的塑料在火焰中会被点燃并熔化,复合矿物燃烧时无明显变化,燃烧完后会变成磷酸三钙一类的结晶矿物,从而失去韧性。 由于“白色污染”,大片水域遭塑料倾倒、人体内发现微塑料或是动物误食塑料致死等资讯时常见诸报端。对此,研究团队做了一些模拟自然界风化、沉淀、被动物吞噬的实验。 研究团队的大致结论是,复合矿物在水中长时间浸泡(3个月以上),其中的聚乙烯醇和海藻酸可以被溶解,它们对环境友好,不会造成污染,剩下的沉淀是结晶的羟基磷灰石,与地质中的矿物羟基磷灰石无异。 刘昭明表示,即复合矿物在海洋或者雨水风化作用下,最终转变为地质矿物,回归自然。此外,复合矿物在pH值为4的酸性环境中,无机矿物部分会溶解。因此如果有动物误食这个材料,理论上是可以被缓慢降解吸收的,不太会产生塑料堵塞野生动物消化系统的问题。 据介绍,研究团队将围绕降低复合矿物制备成本等方面开展进一步研究。 ?“材料中无机含量达到80%已经是很大的突破,但是剩下接近20%的高分子使‘复合矿物’不能变成真正的矿物。” 刘昭明说,团队还希望能揭示“周期性缺陷结构”磷酸钙的形成机理,并将其中的有机高分子完全去除,对无机物的认识、合成与结构控制更上一层楼。